
FingFormer: Contrastive Graph-based Finger Operation
Transformer for Unsupervised Mobile Game Bot Detection

†Wenbin Li1,2, †Xiaokai Chu1,2, Yueyang Su1,2, ∗Di Yao1, Shiwei Zhao3,
Runze Wu3, Shize Zhang3, Jianrong Tao3, Hao Deng3, ∗Jingping Bi1
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China1

University of Chinese Academy of Sciences, China2,
NetEase Fuxi AI Lab, China3

{liwenbin20z,chuxiaokai,yaodi,bjp}@ict.ac.cn,suyueyang19@mails.ucas.edu.cn
{zhaoshiwei,wurunze1,zhangshize,hztaojianrong,denghao02}@corp.netease.com

ABSTRACT
This paper studies the task of detecting bots for online mobile
games. Considering the fact of lacking labeled cheating samples
and restricted available data in the real detection systems, we aim
to study the finger operations captured by screen sensors to infer
the potential bots in an unsupervised way. In detail, we introduce a
Transformer-style detection model, namely FingFormer. It studies
the finger operations in the format of graph structure in order
to capture the spatial and temporal relatedness between the two
hands’ operations. To optimize the model in an unsupervised way,
we introduce two contrastive learning strategies to refine both
finger moving patterns and players’ operation habits. We conduct
extensive experiments under different experimental environments,
including the synthetic dataset, the offline dataset, as well as the
large-scale online data flow from three mobile games. The multi-
facet experiments illustrate the proposed model is both effective
and general to detect the bots for different mobile games.

CCS CONCEPTS
• Computing methodologies→Machine learning; Anomaly
detection.

KEYWORDS
mobile game, bot detection, Transformer, contrastive learning, clus-
tering

ACM Reference Format:
†Wenbin Li1,2, †Xiaokai Chu1,2, Yueyang Su1,2, ∗Di Yao1, Shiwei Zhao3,,
Runze Wu3, Shize Zhang3, Jianrong Tao3, Hao Deng3, ∗Jingping Bi1 . 2022.
FingFormer: Contrastive Graph-based Finger Operation Transformer for
Unsupervised Mobile Game Bot Detection. In Proceedings of the ACM Web
Conference 2022 (WWW ’22), April 25–29, 2022, Virtual Event, Lyon, France.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3485447.3512272

∗ Corresponding authors. † Equal contribution.

This work is licensed under a Creative Commons Attribution International
4.0 License.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9096-5/22/04.
https://doi.org/10.1145/3485447.3512272

1 INTRODUCTION
In the past decades, the popularization of mobile terminal devices
(e.g., smartphone and tablet) andmobile operating systems has moti-
vated a rapid growth of pluralistic online mobile games1. Nowadays,
mobile games have accounted for nearly half of the game market
share, and their revenue is growing stably every year. For many
Internet enterprises, the mobile game business has become an im-
portant part of the profit, e.g., it made up fifty percent of NetEase’s
income with 6 billion dollars in 2020.2.

On the other hand, a popular mobile game is inevitably impacted
by the game bots3. Typical bots, such as the cheating programs in
a mobile Fighting Game (FTG), simulate the finger operations with
unreasonable reaction speed to compete with the honest players
in an unfair way. It not only brings frustrating experience to the
honest players, but also causes huge economic loss to the game
companies [23, 24]. Therefore, an effective bot detection approach
is always urgent and of vital importance for any game company.

To date, there has been a great effort to detect game bots based on
multi-view information, such as monitoring suspicious processes
and building the blacklist [24], analyzing players’ profile, behaviors
or social relationships [14, 22, 23].

However, most current efforts only focus on the PersonalComputer
(PC) games, while little attention is paid to the bots in the flourish-
ing mobile games. Compared to the various heterogeneous data
in PC games, the available data for mobile game bot detection is
usually plain and limited. Due to the privacy protocol, in most cases
only the screen sensor data could be available for analysis [13]. The
screen sensor data is collected by a set of sensors under the screen,
which records the events triggered by fingers, such as a click or
drag, as well as the corresponding screen position and timestamp.
Therefore, due to the limited data and the characteristics of the
mobile game business, a bot detection approach has to overcome
the following challenges:
• Double hands operating mode. Most mobile games re-
quire the player to play with both hands, e.g., the left hand
controls the role’s movement while the right hand releases
the skills, so the operations of two hands are highly related.
Thus, an effective approach should not only analyze the

1For brevity, in the rest of the paper, we directly use the term “mobile game” to refer
to “online mobile game”.
2Refer to the financial report of NetEase in 2020 in http://gb.corp.163.com/gbnews/
General.html
3The game bot in this paper refers to the illegal program/software that pretends to be
a player in the game for unfair competition.

3367

https://doi.org/10.1145/3485447.3512272
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3485447.3512272

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Wenbin and Xiaokai, et al.

finger movement of each hand, but also consider the tempo-
ral and spatial associations between the operations of both
hands for more precise prediction.
• Lack of labeled cheating samples.The daily sensor records
are massive (e.g., billions of), while the records generated by
bots usually only account for a very small part (e.g., thou-
sands of), thus it is laborious to directly obtain the cheating
samples by manual labelling. An unsupervised approach is
urgently required to find the potential cheating operations
from the tremendous amount of daily data.
• General for different games or game scenes. For a game
company, it may operate dozens of mobile games at the
same time. Also, most mobile games are not limited to a
single game scene. For example, different maps or modes
(e.g., single-player mode and multi-player mode) will change
the game scene, which can also influence the rule and the
way to play. Moreover, the available games/scenes for model
learning is usually restricted from a commercial perspective,
thus the generality of the proposed approach for different
games/scenes is also an important issue that we should con-
sider.

In response to these challenges, this paper introduces a novel
game bot detection model, called FingFormer , which aims to learn
distinctive operation embeddings via a graph-based Transformer [29,
34] model. Specifically, to model the temporal-spatial associations
between operations of different hands, we regard each record col-
lected by the sensors as a Finger Operation Graph. Each node in the
graph denotes a recorded finger point, the edge between two nodes
of the same hand models the finger movement in the spatial context,
and the nodes of different hands are associated by another type of
edge which models the temporal relatedness between operations.
After that, the proposed FingFormer model takes this graph as input
to study the operation embedding via a graph-based Transformer
model, which contains a Graph-based Encoding module and a Left-
Right Interaction module. Moreover, in order to optimize the model
in an unsupervised way, we introduce two contrastive learning [25]
strategies for both finger movement learning and operation habit
learning. We conduct a set of experiments under different experi-
mental environments, including the synthetic dataset, the offline
dataset sampled from two real scenes, and the large-scale online
data from three mobile games. Our proposed FingFormer can al-
ways achieve the best performance. In a nutshell, the contributions
of this paper are:

• Unsupervised Mobile Game Bot Detection. To the best
of our knowledge, this is the first work to study mobile game
bot detection based on the sensor data and pre-training.
• AGraph-based Transformer-style model. To learn both
hands operation in the temporal and spatial context, we
model a sensor record as a Finger Operation Graph. Addition-
ally, we introduce a novel graph-based Transformer model
(FingFormer) to study the complex operation embeddings.
• Contrastive Learning Strategy. Facing the lack of labels
, we introduce two novel contrastive learning strategies to
learn distinctive embeddings for the successful inference of
bots.

• Extensive Offline and Online Experiments. We evalu-
ate the model on both offline experiments and the large-scale
online bot detection. Experimental results show that the pro-
posed FingFormer is effective on mobile game bot detection
and also generic to different types of mobile games or scenes.

The rest of this paper is organized as follows: Section 2 briefly
reviews the previous works and compares the difference between
PC game bot detection and mobile game bot detection. Section 3
gives some formally definitions. We describe the proposed model
FingFormer in detail in Section 4, validate the model by analyzing
extensive offline and online experiments in Section 5, and conclude
this work in Section 6.

2 RELATEDWORK
The online games, such as personal computer games and mobile
games, have been one of the largest growing Internet business
in the world, attracting a large mount of people from different
ages, nationalities, and occupations [20]. However, the thriving
online game industries are always facing the serious threats from
game bots. A game bot usually pretends to be a human player
but easily achieves great superiority over the honest players due
to its unfair operations, such as the extremely accurate shots or
incredible reaction speed in First-Person Shooting (FPS) games. It is
indisputable that game bots inevitably destroy the game experience
of normal players, and seriously hurt the in-game ecosystem and
the company’s revenue. Therefore, a series of approaches have been
proposed to detect game bots in the past decades, while most of
them focus on the personal computer (PC) games.

For example, many game companies have developed the anti-
cheating systems to serve a better competitive environment for play-
ers, in order to keep the game communities growing up healthily.
However, the anti-cheating systems also have their inherent prob-
lems, namely the system hysteresis. Specifically, it is always being
one step behind the most sophisticated cheaters, due to the search-
ing for malware or evidence that game bots has been tampered
with [20].

Another trend of game bot detection for PC games is based on
the popular machine learning methodology, especially the deep
learning models [8, 26, 31]. They usually design specific models
based on the utilized information to predict whether a player is
a bot or not. For example, literature [1] adopted a concise neural
network model to discriminate human users from game bots based
on the human-craft features extracted from both player profile
and game scenes. While literature [22] designed a combination
of supervised and unsupervised methods based on the behavior
sequences. Some researchers also detected the suspicious players
by analyzing their social relationships. For example, literature [14]
inferred the potential bots based on the virtual goods exchange
networks. Some other works [4, 5, 17, 21] also incorporated other
heterogeneous information to enhance the exploration of bots.

However, the study of bot detection for online mobile games has
not been well-explored. Different from the abundant and hetero-
geneous information in PC games, the available information for
bot detection in mobile game is limited. In particular, usually only
screen sensor data is available for the bot analysis mainly for the
following two reasons: (1) privacy protection, screen sensors capture

3368

FingFormer: Contrastive Graph-based Finger Operation Transformer for Unsupervised Mobile Game Bot Detection WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

the events on the screen without the request of other permissions
of a mobile phone, thus the personal information is unable to be
collected by the sensors, which effectively protects the privacy of
players (2) general among mobile games, the screen sensor data is a
common data type for any mobile game, thus an effective sensor
data-based detection method will be generic for different mobile
games. For instance, literature [30] detected auto clicks in mobile
games based on simple features extracted from screen sensor data.

Moreover, the insufficient labelled cheating samples also brings a
dilemma for a (semi-)supervised model to distinguish the bots from
the massive daily records via the supervised signals. Therefore, this
paper aims to deal with the unsupervised mobile game bot detection
problem by introducing a systematic framework, FingFormer, for
the construction of the real-world cheat recognition applications.

3 PROBLEM DEFINITION
Before introducing the approach, we first give the formal definitions
related to the studied problem. Without loss of generality, we in
this paper focus on the typical two-hands mobile games, i.e., require
both hands to operate, as the single-hand games can be regarded
as a special case of the studied problem. Moreover, we assume that
at each timestamp only one finger can operate on the screen for
each hand, but both hands can operate at the same time. For the
bot detection of the multi-touch mobile games (more than three
fingers), such the music game, we leave them as a future work.

In this paper, we study the problem of mobile game bot detection
based on the records collected by the screen sensors, where each
record contains a sequence of finger events on the screen. A finger
event is defined as:

Definition 1 (Finger Event). A finger event e denotes a process
of a single finger from pressing the screen to leaving the screen.
It is defined as e = {P,γ }. P = {p1,p2, . . . ,p |P |} is a sequence of
points on the screen. Each point pi is a triplet (xpi ,ypi , tpi), where
(xpi ,ypi) is the coordinate of the screen and tpi is the timestamp of
point pi , and tpi < tpi+1 . γ ∈ Γ denotes the current event event, and
Γ is a set of all possible event types that the sensors could capture,
such as a click or a drag.

The sensors usually collect the data according to a certain time
interval, so one finger event can be a sequence of points if it lasts
for a long time, like a “drag” or a “long press”. Also, it is noteworthy
that the screen sensors cannot distinguish which finger (or hand)
triggers the event on the screen.

Definition 2 (Record). A record collected by sensors in a given
time window is defined as r = {τ ,u}, where u is the corresponding
player id, which has been anonymized but the records of the iden-
tical player share the same id. τ is an event sequence generated by
this player, i.e., τ = {e1, e2, . . . , e |τ |}.

To be precise, the event sequence τ is not a strict sequence from
the aspect of time. Since the sensors cannot directly distinguish
which hand triggers an event, for two events ei , ej ∈ τ and i < j,
ei either happens before ej (they belong to the same hand) or they
intersect in time (they belong to different hands). Finally, we define
the studied unsupervised mobile game bot detection problem as:

Definition 3 (Mobile Game Bot Detection). Given a set of records
R = {r1, r2, · · · , r |R |}, this task aims to infer the potential cheating
records in an unsupervised way.

Table 1: The primary notations in this paper.
Sensor Record

R = {r1, r2, · · · } a set of records collected by sensors
r = {τ , u } a record
u the player id
τ = {e1, . . . , e |τ | } a sequence of finger events
e = {P, γ } a finger event
γ ∈ Γ γ is an event type, Γ denotes all possible types
P = {p1, . . . , p |P | } a finger point sequence of the event e
p = (xp, yp, tp) a finger point
(xp, yp), tp the coordinate on the screen and timestamp

Preprocess
G = {G(l), G(r), E(l,r) } the finger operation graph of a record
G(l) = {V(l), E(l) } the left-hand graph
V(l) = {(v (l)i , a (l)i)} the node set of the left-hand graph
v (l)i , a (l)i a left-hand node and its attributes
E(l) the intra-edges of the left-hand graph
E(l,r) the inter-edges across different hands
b (l)i, j, b

(l,r)
i, j attributes of edges (v (l)i , v (l)j) and (v

(l)
i , v (r)j)

∆t (l,r)i, j the time interval between v (l)i and v (r)j
d (l)i, j the distance between v (l)i and v (l)j on screen

Model Architecture
E the learnable embedding table
Φ the Graph-based Encoding module
Ψ the Left-Right Interaction module
X , Y , Z X is the input of the module Φ

Y , Z are the input and output of Ψ,
e the final embedding of a record (graph)

4 FINGFORMER
As shown in Fig 1, the proposed FingFormer contains two concise
parts: (1) a preprocess stage first converts each screen sensor record
into a Finger Operation Graph; (2) the FingFormer model takes
the graph as input and generates the graph embedding via two
Transform-style modules, i.e., the Graph-based Encoding module
and the Left-Right Interaction module. Moreover, we introduce two
contrastive strategies to optimize the model under the unsupervised
scheme. The primary notations used in this paper is arranged in
Table 1, and the following sections detail the whole framework.

4.1 Preprocess
To model the temporal-spatial relatedness of the two-hands opera-
tions, we regard each record as a Finger Operation Graph. We first
explain how to build the graph, and then illustrate our motivation
for such design.

4.1.1 Graph building. As shown in Fig 1, each node in graph is a
recorded finger point on the screen. The finger operation graph
contains two types of edges: (1) intra-edge, which models the finger
movement of each hand in the context of space; (2) inter-edge, which
illustrates the operating association between two hands in time.

Specifically, since the screen sensors cannot directly distinguish
different hands, to construct the graph, we first need to divide the
finger events into left hand and right hand. The process is primarily
based on two empirical rules:
• Continuity rule. All the finger points of an event should
belong to the same hand. In Fig. 1, for example, the points
p1,p2,p3 in once drag event should belong to the same hand.

3369

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Wenbin and Xiaokai, et al.

Screen Sensor Record

𝑝1
𝑝2

𝑝3

𝑝1

𝑝3

𝑝2

𝑝1

𝑝1

Spatial Biased

Attention

Add & Norm

Feed Forward

Add & Norm

Temporal Biased Attention

a finger point a click event a drag event

Legend

Graph building

𝑣1
(𝑙)

𝑣3
(𝑙)

𝑣4
(𝑙)

𝑣2
(𝑙)

𝑣1
(𝑟)

𝑣2
(𝑟)

𝑣4
(𝑟)

𝒢(𝑙) = {𝒱 𝑙 , ℰ(𝑙)} 𝒢(𝑟) = {𝒱 𝑟 , ℰ(𝑟)}

ℰ(𝑙,𝑟)
ℰ(𝑙) 𝒱 𝑟 ℰ(𝑟)

𝒱 𝑙

𝑣3
(𝑟)

Spatial Biased

Attention

Add & Norm

Feed Forward

Add & Norm

Temporal Biased Attention

Input graph

Preprocess Model Architecture

node attri: 𝒂1
(𝑙)
= (𝑖, 𝛾1

(𝑙)
, 𝑑1,2

(𝑙)
, 𝛼1

(𝑙)
)

intra-edge attri: 𝒃1,4
(𝑙)

= (𝑑1,4
(𝑙)
)

inter-edge attri: 𝒃3,2
(𝑙,𝑟)

= (Δ𝑡3,2
(𝑙,𝑟)

)

Graph-based

Encoding Module

Feed Forward Feed Forward

Finger Operation Graph

Left-Right

Interaction Module

𝑳𝟏 ×

𝑳𝟐 ×

𝒀 𝑙 𝒀 𝑟

𝒁 𝑙 𝒁 𝑙Aggregating Layer

𝒆

the order of points in time

Figure 1: An illustration of the proposed FingFormer. Left: the collected sensor data is first processed into a finger operation
graph, which models the temporal and spatial relatedness between the collected finger points. Right: the FingFormer model
contains two modules, where a Graph-based Encoding module takes the graph as input and studies the finger movement for
each hand, while the Left-Right Interaction module fuses the information from both hands and refines the embedding.

• Position-based rule. On top of the continuity rule, we ad-
ditionally split the points by their positions on the screen.
In practice, we regard the left half part of the screen belongs
to the left hand, while the right part as the movement area
for the right hand. Moreover, for an event that crosses the
left and right areas, such as a “drag”, we regard it belongs to
the area where the first finger point appears.

According to above rules, each point in a record will be assigned to
the corresponding hand.

After that, we construct a finger operation graph as

G = {G(l),G(r), E(l,r)}, (1)
where G(l) is the left-finger operation graph and G(r) is the right-
finger operation graph, they are both complete graphs that model
the finger movement of each hand. E(l,r) refers to the set of inter-
edges across G(l) and G(r).

We take left graph G(l) = {V(l), E(l)} as an example (same for
the right graph).V(l) = {(v(l)i ,a

(l)
i)

��i ∈ [1, · · · ,nl]} denotes the set
of nl left nodes. Each node v(l)i corresponds to a recorded point of
left fingers. a(l)i denotes a set of attributes of node v(l)i :

a(l)i = (i,γ
(l)
i ,d

(l)
i,i+1,α

(l)
i). (2)

The index i denotes the node v(l)i is the ith point in left-hand oper-
ation sequence according to the timestamp, γ (l)i denotes the event
type. d(l)i,i+1 is the distance to the next finger point in time, and α (l)i
represents the included angle, i.e., the included angle between edges
(v
(l)
i−1,v

(l)
i) and (v

(l)
i ,v

(l)
i+1) on the screen. The attributes d(l)i,i+1 and

α
(l)
i reveal the moving characteristic of the finger. E(l) denotes the

intra-edges between each pair of the nodes in left graph:

E(l) =
{
(v
(l)
i ,v

(l)
j ,b

(l)
i, j)| v

(l)
i ,v

(l)
j ∈ V

(l)
}
. (3)

b(l)i, j is the edge attribute. Without loss of generality, we here use the
distance between the two points as the attribute, i.e., b(l)i, j = (d

(l)
i, j),

which models the spatial relatedness between every two points.
Between the two graphs, there is a set of inter edges E(l,r) which

models the temporal association between the left-hand and right-
hand operations:

E(l,r) =
{
(v
(l)
i ,v

(r)
j ,b

(l,r)
i, j)| v

(l)
i ∈ V

(l),v
(r)
j ∈ V

(r)
}
. (4)

Also, we here only use the interval time between nodes v(l)i and
v
(r)
j as the edge attribute, i.e., b(l,r)i, j =(∆t (l,r)i, j).
Moreover, all the attribute values (including node attributes and

edge attributes) will be converted into the integer type, serving for
the next embedding learning model.

4.1.2 Discussion. Here we bring a brief discussion of the finger
operation graph by answering the following questions.

(1) Why we use the distance as the attribute of intra-edge?
The nodes of each graph is a sequence, i.e., if i<j , the correspond-

ing node (point) v(l)i must happen before node (point) v(l)j . In that
case, we do not have to model the temporal relationship between
different nodes in each hand. On the other hand, we should model
the relative distances between each two nodes, as it can reflect the
typical finger moving patterns, which help us discover the abnormal
samples.

(2) Why we use the interval time as the attribute of inter-edge?

3370

FingFormer: Contrastive Graph-based Finger Operation Transformer for Unsupervised Mobile Game Bot Detection WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

As the two hands are limited to each side of the screen, the finger
points of different hands are usually independent in space. However,
they are highly related in the temporal context. For example, a
game requires the left finger to control the direction while the right
finger to release the skills. In this case, the operations of the left
and right fingers need temporal tacit in order to achieve a good
score. Moreover, modeling the temporal association between left
and right fingers can help summary the typical operating patterns
for different games, benefiting the exploration of the bots.

4.2 Model Architecture
The architecture of the proposed FingFormer is presented in the
right part of Fig. 1, which takes the finger operation graph as input
and generates the graph embedding, reflecting a global view of the
record. FingFormer consists of two encoding modules to model the
contextually operating information from both hands. In the first
module, two separate Graph-based Encoding modules take each
single-hand operation graph as input, and learns the the embedding
by estimating the spatial relatedness among finger movements.
After that, a Left-Right Interaction module integrates both left-hand
and right-hand embeddings and studies their interaction from the
temporal perspective.

4.2.1 Graph-based Encoding Module. The Graph-based Encoding
module Φ(·) consists of two blocks Φ(l)(·) and Φ(r)(·), which process
left-hand and right-hand graphs through a multi-layer graph-based
Transformer encoders, separately. Since the two blocks are coun-
terparts, we here detail the architecture of left block Φ(l)(·).

Encoding block Φ(l) takes the left-hand graph G(l) as input. In
detail, for each node v(l)i with attributes a(l)i = (i,γ

(l)
i ,d

(l)
i,i+1,α

(l)
i),

we first map each attribute value into continuous vector space and
obtain the attribute embedding X (l)i via the follows aggregating
function:

X (l)i = Eγ (γ
(l)
i) + Ed (d

(l)
i,i+1) + Eα (α

(l)
i) + Epos (i), (5)

where Eγ , Ed , Ed , Eα , Epos are learnable embedding matrices
shared between modules Φ(l) and Φ(r), Epos is the positional em-
bedding matrix [29] which preserves the order of finger points in
the left hand.

After that, a multi-layer Graph-based Transform-style encoder
is adopted to capture the finger movement. In detail, to discover the
typical finger movement patterns in each single hand, we introduce
a spatial-biased multi-head self-attention SpatialBiasedAttn(·) to
study the spatial correlation between different recorded points,
where ith self-attention head is:

A(i) = Q(i)K (i)⊤/
√
dk + B

(l)
Φ , (6)

Q(i) = HW
Q
i , K (i) = HW K

i , V (i) = HWV
i , (7)

where H is the input of each attention layer and the attribute
embedding X is the input of the first layer.WV

i ,WQ
i andW K

i
are the learnable matrices. The offset matrix B(l)Φ is the intra-edge
embedding matrix corresponding to edge attributes. In particular,
for each intra-edge (v(l)i ,v

(l)
j), its embedding is:

B(l)Φ (i, j) = Eintra (d
(l)
i, j), (8)

where Eintra is a learnable embedding matrix shared between Φ(l)

and Φ(r), which incorporates the spatial correlations among the
finger movements into embedding learning. Finally, the Graph-
based Encoding module generates the left-hand embedding as:

Y (l) = Φ(l)
(
G(l)

)
. (9)

4.2.2 Left-Right Interaction Module. The previous Graph-based En-
coding module can only capture the finger movements of each hand,
however, in real gaming, the left-hand and right-hand movements
are highly correlated in time. For instance, a game may require the
player to drag with his left hand to control the direction so that
he faces the enemy, while clicking with his right hand to release
the skill. Therefore, we introduce another Left-Right Interaction
module Ψ(Y (l),Y (r)) to estimate the temporal associations between
the operations of both hands. It contains the multi-layer temporal-
biased multi-head attention:

TempBiasedAttn(Q,K ,V ,BΨ). (10)

The calculation of Eq. (10) is similar to Eq. (6) and Eq. (7), but the in-
put matrixH in Eq. (7) is replaced withQ ,K andV , respectively. BΨ

is the inter-edge embedding matrix, which reveals temporal relat-
edness between left and right operations. For each edge (v(l)i ,v

(r)
j),

its embedding is calculated as:

BΨ(i, j) = Einter (∆t
(l,r)
i, j), (11)

whereEinter is a learnable embeddingmatrix,∆t (l,r)i, j is the attribute
value of inter-edge (v(l)i ,v

(r)
j), indicating the interval time between

the two points. Similar to Eq. (6), The inter-edge embedding BΨ is
adopted as a bias in the attention calculation for each layer.

To fully model the interaction between hands, as shown in Fig. 1,
in each layer, we adopt a pair of symmetry temporal-biased multi-
head attention to jointly learn the left-right association as:

M(l) = TempBiasedAttn(l)(H (l),H (r),H (r),BΨ), (12)
M(r) = TempBiasedAttn(r)(H (r),H (l),H (l),−B⊤Ψ). (13)

After that, a skip connection is adopted to send the interaction
information as well as the single hand operation patterns to the
next layer:

H (l) ← FFN (l)
(
H (l) ⊕M(l)

)
, (14)

H (r) ← FFN (r)
(
H (r) ⊕M(r)

)
, (15)

where FFN (·) is a feed-forward network, ⊕ denotes a concatenating
operation. H (l) is the left-hand input for each attention layer, and
the input of the first layer is Y (l). The last layer of the temporal-
biased attention output the embedding matrix of left-hand and
right-hand operating embeddings Z (l) and Z (r). Finally, we obtain
the whole graph representation e by an aggregating layer, which
summaries the information from all the nodes in the graph as:

e = So f tmax(FFN (Z))⊤Z , Z = Z (l) ⊕ Z (r). (16)

The graph embedding e will be used for the model optimization in
Section 4.3 as well as finding the bots.

3371

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Wenbin and Xiaokai, et al.

4.2.3 Complexity Analysis. The time complexity consists of two
parts: the preprocess stage and the FingFormer model. The pre-
process stage takes a screen senor record as input and generates
the corresponding finger operation graph. Its time complexity is
about O(n2), where n is the number of points in a record. The
FingFormer model contains two modules. For the Graph-based En-
coding module, it consists of two blocks for different hands, and
the time complexity of encoding the left-hand graph is O(L1n2l d),
where nl is the number of nodes, L1 and d are the number of layers
and hidden dimension, respectively. The time complexity of the
Left-Right Interaction module is O(2nlnrdL2), where L2 is the num-
ber of layers in the module. Therefore, the total time complexity of
FingFormer module is O(d(n2l + n

2
r)L1 + 2dnlnrL2), which is much

lower than the traditional Transformer models which concatenate
the left-hand record and right-hand record as input.

4.3 Contrastive Learning Strategy
Due to the difficulty of obtaining sufficient cheating samples, an un-
supervised learning strategy is urgently encouraged to distinguish
the bots from the honest players. Typical unsupervised learning
strategies, such as to reconstruct the input, however, usually fail
to deal with the screen sensor data. Since the input operation se-
quence is expected to be fully decoded from the learned embedding,
the reconstruction-based learning is very sensitive to the noise.
For example, a human player is usually easy to make a touch by
mistake on the screen, so that the reconstruction-based learning is
not applicable to learn the real operating patterns. To handle this
problem, we introduce two contrastive learning strategies for train-
ing mobile game sensor data, which learn the finger movements
and a player’s operating habits, respectively.

4.3.1 FingerMovement Contrastive Learning. Since the goal of most
bots is to maximize the benefit in game, many cheating programs
will display the unusual finger movement patterns in some specific
scenarios. For example, when trying to get close to a boss, most
human players tend to move around slowly and carefully, trying to
find its weakness. However, the mature bots usually directly rush to
the boss according to a established track and release the skills. The
different behaviors between human players and bots will reflect in
their finger movements. Therefore, our first objective is to capture
the finger moving patterns by the contrastive strategy. Specifically,
inspired by the sampling strategies in [7, 18, 27], for each mobile
game record ri = {τi ,u} from player u, we down-sample another
sequence τi,ρ from the finger moving sequence τi with probability
ρ as:

τi,ρ = DownSample(τi , ρ). (17)

In practice, we set the sampling probability ρ as 0.8. The sampled
sequence τi,ρ can be regarded as the positive sample of the original
sequence, which gives a vague description of the original moving
patterns. Then we generate another negative sample τz,ρ , which is
obtained via down-sampling from another random record rz . Thus,
the objective of learning the finger movement is to distinguish the
positive sample from the negative sample via:

ℓ1(ri) = −loдσ

(
D1

(
ei ,ei,ρ

))
−loдσ

(
1 − D1

(
ei ,ez,ρ

))
, (18)

where e is the learned embedding from the FingFormer model. The
function D1(x ,y)=x⊤W1y + b1 is a bilinear function, whereW1
and b1 are the learnable parameters.

4.3.2 Operation Habit Learning. However, the first contrastive
strategy cannot covers all the bots, as some “clever” bots can still be
disguised as a human player by performing some redundant/random
finger movements. We thus require another strategy to enhance the
discrimination, which we consider to model the player’s operation
habits.

In detail, we have observed that a player usually has his/her own
operat ion habits, such as the collaborative mode between hands
when releasing a combo4. Despite the operations of the same player
can be diverse for different mobile games, his/her operation habits
should retain in different games. Also, it is intuitive that different
players usually do not have exactly the same habits. However, for
a bot software, it is always sold to as many people as possible for
the huge profits. In that case, the cheating players who use the
same type of bots will behave similar or exactly the same operation
habits. Thus, for the operation records τi and τj from the same
player u, we randomly select an operation record τk from another
player v , and introduce the following objective:

ℓ2(ri) = −loдσ

(
D2

(
ei ,ej

))
−loдσ

(
1 − D2

(
ei ,ek

))
, (19)

The goal of the above objective is to refine the operation habits of
a player u by distinguishing his/her habits from another players v .

4.3.3 Objective. The total objective function thus can be defined
as the weighted sum of the two contrastive strategies:

L = λ1
∑
ri ∈R

ℓ1(ri) + λ2
∑
ri ∈R

ℓ2(ri) (20)

where λ1 and λ2 are the hyper-parameters to balance the two parts.

5 EXPERIMENT
To validate the effectiveness of the proposed model, we conduct ex-
tensive experiments in different environments. All the experimental
data and environment below are provided by NetEase Games5.

5.1 Experiment Settings
we first detail the datasets, evaluating metrics, and baseline models
used in the experimental studies.

5.1.1 Dataset. The data can be roughly divided into two parts:
a training dataset for pre-training the models, and three test
datasets to verify the performance. The training dataset is arranged
as follow: we randomly sample about 100,000 records of a scene A
in an online mobile game Game06 in a day. The three test datasets
are organized as follow:
• Offline Test Data. The offline test data contains two parts.
The first part is 3,000 labeled records of scene A in Game0,
where the normal records and cheating records are both
1,500. Also, to evaluate the generality to different scenes,
there are 3,000 labeled samples from another scene B in

4A combo refers to a sequence of actions (usually controlled by the left hand) or skills
(usually released by the right hand) in a limited time.
5http://game.163.com
6All the names of games/scenes have been anonymized.

3372

FingFormer: Contrastive Graph-based Finger Operation Transformer for Unsupervised Mobile Game Bot Detection WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Table 2: The clustering performance on the synthetic dataset. (bold: best; underline: runner-up.)

traj2vec Traj2SimVec Transformer t2vec FingFormer Improvement
NMI 0.005 0.117 0.419 0.758 0.830 9.50%
ARI -0.008 0.027 0.387 0.721 0.852 18.17%

FingFormertraj2vec Traj2SimVec Transformer t2vec

Figure 2: Visualization of the learned embeddings in the synthetic dataset. The red points denote the normal records, while
the other four colors are the cheating records generated by four different bots.

Game0, where the normal and cheating records are also both
1,500.
• Synthetic Test Data.We obtained four different game bots
before. We use each bot to generate 300 gaming records
in the scene A , together with the 1,500 normal records to
combine the synthetic test dataset.
• Online Test Data. We capture a small daily data flow of
three online games from the server (i.e., Game1, Game2 and
Game3). It contains about a million operation records, and
the proportion of the three games is about 1:3:20. For each
game, we require a detection model to infer the top-1%
records which are probably to be the bots. Then, the experts
will label the predicted records and evaluate the performance.

5.1.2 Evaluation Methodology. In the following experiments, we
adopt ARI [33] and NMI [12] as clustering metrics, Precision and
F1-score as classification metrics to evaluate the performance in
different experimental environments. Precision is only used in the
online experiment.

5.1.3 Baseline. Since there is no previous work focusing on this
problem, we in this paper primarily compare with the state-of-the-
art approaches that models the sequential data:
• traj2vec [32] focuses on trajectory clustering. It first ex-
tracts a feature sequence through a sliding window, then
employs a sequence-to-sequence auto-encoder to learn tra-
jectory representations.
• Traj2SimVec [35] focuses on the trajectory similarity com-
putation. It simplifies the trajectories for indexing to obtain
triplet training samples efficiently, and incorporates sub-
trajectory similarity information into embedding learning.
• t2vec [15] also focuses on trajectory similarity computation.
It introduces a spatial proximity-aware loss function and a
de-noise sequence-to-sequence based model to recover the
original trajectory.
• Transformer [29] is an effective attention-based approach
to model the sequential data, which has achieved the-state-
of-the-art performance in various tasks in natural language
processing [2, 9, 19], computer vision [3, 6, 10], etc.

5.1.4 Experiment Settings. We need to study both the left-hand
and right-hand operation sequences, thus for the models except

Transformer, we train two sub-models, each studies the operations
of a hand, while the output of two sub-models are concatenated as
the final representation of the input record. For Transformer, follow-
ing [9], we concatenate left-hand sequence and right-hand sequence
separated by a special token [SEP]. The input of Transformer is the
same as our FingFormer, and we also adopt our contrastive learning
strategy to pre-train Transformer.

For our FingFormer, the hidden dimension d is set as 128, the
numbers of heads in temporal-biased attention and spatial-biased at-
tention are both set as 8. Based on the statistics of operation records,
we empirically set the maximum number of left-hand points nl as
270 and right-hand points nr as 130, respectively. The numbers of
encoder layers L1 and L2 are both set to 2. We put equal weight on
the two contrastive strategies in Eq. (20), and set λ1=λ2=0.5.

5.2 Synthetic Environment Comparison
To verify the effectiveness, we first compare the models in an ideal
synthetic environment. The synthetic dataset contains 1,500 normal
records and 1,200 cheating records generated from four different
bot programs (i.e., each generates 300 records). Each model is asked
to generate the embeddings for the records and a classical clus-
tering model (KMeans) [16] is then adopted to group the learned
embeddings into five categories. For an effective model, it should
not only distinguish the normal records from the cheating records,
but should also identify different types of game bots. Therefore,
an effective model should achieve good clustering performance
in this experiment. The results of NMI and ARI are presented in
Table 2. To present a more intuitive comparison, we use t-SNE [28]
to transform the representations into a 2-dimensional vector space
and plot the results in Fig. 2.

From the results, we can observe that the proposed FingFormer
achieves the best performance, with an improvement of 9.50% on
NMI and even 18.17% on ARI compared with the best-performing
baselines. Also, from the visualization in Fig. 2, we observe that
FingFormer makes each class tightly cluster together, as well as
identifies obvious boundaries between different clusters. For the
baseline models, methods traj2vec and Traj2SimVec perform poorly
on this dataset. For example, their NMI and ARI score are nearly
zero, and the learned embeddings are entangled severely. We also
find that t2vec achieves the satisfactory performance on this syn-
thetic dataset, and performs better than other baselines. This mainly

3373

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Wenbin and Xiaokai, et al.

Table 3: The performance of ARI, NMI, F1 on the offline
dataset (bold: best; underline: runner-up.)

scene A scene B
NMI ARI F1 NMI ARI F1

traj2vec 0.001 -0.001 0.663 0.001 0.000 0.665
Traj2SimVec 0.026 -0.021 0.580 0.009 -0.001 0.680
Transformer 0.515 0.603 0.886 0.122 0.074 0.629
t2vec 0.546 0.621 0.901 0.429 0.515 0.873
FingFormer 0.690 0.778 0.942 0.593 0.701 0.924
Improvement 26.37% 25.28% 4.55% 38.23% 36.12% 5.84%

owing to its down-sampling strategies for de-noising, which en-
hance its robustness in faced with different types of records. While
for Transformer, we find that it shows fair performance in this exper-
iment. As shown in Fig. 2, its learned embeddings can extract some
basic characteristics of the same class, still, the different classes are
entangled severely and nearly indistinguishable. The performance
of Transformer indicates that the attention mechanism cannot di-
rectly capture the distinctive operation patterns for distinguishing
the bots. On the opposite, owing to the graph-based modeling of
finger movement and interaction, our FingFormer outperforms all
baseline models to a large extent.

5.3 Offline Evaluation
We also conduct a set of experiment on the real mobile game data
to verify the effectiveness and generality. As described in previous
Section 5.1.1, we compare the performance on two scenes (A and B)
of the same gameGame0, each scene contains 1,500 normal records
and 1,500 cheating records. For each scene, the learned embeddings
will be grouped into two categories via KMeans. After that, we
calculate both the classification accuracy (F1) and the clustering
metrics (NMI, ARI) to evaluate the performance. The results are
presented in Table 3.

As the pre-training data are also collected from scene A, we ob-
serve that most models (except traj2vec and Traj2Simvec) achieve
better performance in scene A than in scene B. Transformer shows
comparable performance with the best-performing baseline t2vec
in scene A, but its effect decreases significantly in scene B, indicat-
ing the poor generality of Transformer in the real-world mobile
game bot detection problem. For our FingFormer, it is consistently
superior than all baselines, for example, we gain the improvement
of over 25% on NMI and ARI, and 4.55% on F1 score in scene A.
Also, FingFormer displays good robustness and generality in Scene
B, with over 35% improvement on NMI and ARI and, as well as
satisfactory F1 score.

In conclusion, the results of the offline dataset indicates that
our FingFormer is both effective and general to detect the bots in
different scenes.

5.4 Online Evaluation
To investigate the effectiveness of our proposed FingFormer in the
real applications, we conduct a set of online experiments. From
the previous experiments, we regard t2vec as a competitor of Fing-
Former, thus we deploy the two models in the online environment

Table 4: Precision comparisons of the online data.

Game1 Game2 Game3
t2vec 0 0.0297 0.108
FingFormer 0.0392 0.0594 0.204
Improvement - 50.00% 47.06%

and compare their abilities of finding bots from the data flow of
three different online mobile games. In detail, for each online game,
the DBSCAN [11] algorithm is adopted to assign the learned embed-
dings into several clusters since it is not clear how many different
kinds of anomalies there are. We regard the records in the biggest
cluster as the normal records, while the records in other clusters
as the potential bots. Then, each model calculates the center of
each suspicious cluster, and infers top-1% possible cheating records
according to the embedding distance to the cluster centers. Finally,
the experts will label these records and calculate Precision. The
results are presented in Table 4.

We can observe that the two models both gain higher precision
inGame3. This is mainly because the popularity and the number of
active players ofGame3 is much larger than the other two games, so
there will be more potential cheating players in Game3. Moreover,
we can observe that our FingFormer outperforms t2vec to a large
extent. In particular, FingFormer has the improvement of about 50%
on both Game2 and Game3. In addition, t2vec cannot find any bots
from Game1, while our FingFormer still can infer several cheating
samples from the massive online data and achieve the precision
of 0.0392. Most notably, despite the precision of FingFormer on
Game1 and Game2 is not high, it is still of great significance for
the practical bot detection application. It means that experts can
use FingFormer to quickly find the samples of the new/latest bots
from the massive data flow, and design corresponding strategies
to avoid the loss of the game company. Therefore, the online ex-
periment results additionally verify the superiority of the proposed
FingFormer model for the online bot detection system compared
with the baseline.

6 CONCLUSION
We have introduced a Graph-based Transformer-style model, Fing-
Former, to tackle the exposed issues for the unsupervised mobile
game bot detection. We process the sensor data into the form of a
finger operation graph to explicitly model the contextual temporal-
spatial operation information between both hands. Moreover, to
embed the graph-based operation data into continuous vector space,
we introduce a novel graph-based encoding module and a left-right
interaction module. Finally, we propose two types of contrastive
learning strategies to effectively refine the distinctive embeddings.
Multi-faceted experimental results show that the proposed tech-
nique significantly boosts the mobile game bot detection systems.

ACKNOWLEDGMENTS
This work has been supported by the National Natural Science Foun-
dation of China under Grant No.: 62077044, 61702470, 62002343.

3374

FingFormer: Contrastive Graph-based Finger Operation Transformer for Unsupervised Mobile Game Bot Detection WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

REFERENCES
[1] Mario Luca Bernardi, Marta Cimitile, Fabio Martinelli, and Francesco Mercaldo.

2017. A time series classification approach to game bot detection. In Proceedings
of the 7th International Conference on Web Intelligence, Mining and Semantics,
WIMS 2017, Amantea, Italy, June 19-22, 2017. 6:1–6:11.

[2] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
In Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual.

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander
Kirillov, and Sergey Zagoruyko. 2020. End-to-End Object Detection with Trans-
formers. In Computer Vision - ECCV 2020 - 16th European Conference, Glasgow,
UK, August 23-28, 2020, Proceedings, Part I, Vol. 12346. 213–229.

[4] Kuan-Ta Chen, Jhih-Wei Jiang, Polly Huang, Hao-Hua Chu, Chin-Laung Lei, and
Wen-Chin Chen. 2009. Identifying MMORPG Bots: A Traffic Analysis Approach.
EURASIP J. Adv. Signal Process. 2009 (2009).

[5] Kuan-Ta Chen, Andrew Liao, Hsing-Kuo Kenneth Pao, and Hao-Hua Chu. 2008.
Game Bot Detection Based on Avatar Trajectory. In Entertainment Computing
- ICEC 2008, 7th International Conference, Pittsburgh, PA, USA, September 25-27,
2008. Proceedings (Lecture Notes in Computer Science, Vol. 5309). 94–105.

[6] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan,
and Ilya Sutskever. 2020. Generative Pretraining From Pixels. In Proceedings of
the 37th International Conference on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event, Vol. 119. 1691–1703.

[7] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. 2020.
A Simple Framework for Contrastive Learning of Visual Representations. In
Proceedings of the 37th International Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event.

[8] Yeonjun Choi, Sungjune Chang, YongJun Kim, HunJoo Lee, Wookho Son, and
Seongil Jin. 2016. Detecting and monitoring game bots based on large-scale
user-behavior log data analysis in multiplayer online games. J. Supercomput. 72,
9 (2016), 3572–3587.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers). 4171–
4186.

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An Image is
Worth 16x16 Words: Transformers for Image Recognition at Scale. In 9th Interna-
tional Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021.

[11] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining (KDD-96), Portland, Oregon, USA, Evangelos Simoudis, Jiawei Han,
and Usama M. Fayyad (Eds.). 226–231.

[12] Pablo A Estévez, Michel Tesmer, Claudio A Perez, and Jacek M Zurada. 2009.
Normalized mutual information feature selection. IEEE Transactions on neural
networks 20, 2 (2009), 189–201.

[13] Frauke Kreuter, Georg-Christoph Haas, Florian Keusch, Sebastian Bähr, and
Mark Trappmann. 2020. Collecting survey and smartphone sensor data with an
app: Opportunities and challenges around privacy and informed consent. Social
Science Computer Review 38, 5 (2020), 533–549.

[14] Eunjo Lee, Jiyoung Woo, Hyoungshick Kim, and Huy Kang Kim. 2018. No Silk
Road for Online Gamers!: Using Social Network Analysis to Unveil Black Markets
in Online Games. In Proceedings of the 2018 World Wide Web Conference on World
Wide Web, WWW 2018, Lyon, France, April 23-27, 2018. 1825–1834.

[15] Xiucheng Li, Kaiqi Zhao, Gao Cong, Christian S. Jensen, and Wei Wei. 2018. Deep
Representation Learning for Trajectory Similarity Computation. In 34th IEEE
International Conference on Data Engineering, ICDE 2018, Paris, France, April 16-19,
2018. 617–628.

[16] James MacQueen et al. 1967. Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley symposium on

mathematical statistics and probability, Vol. 1. Oakland, CA, USA, 281–297.
[17] Jehwan Oh, Zoheb Hassan Borbora, Dhruv Sharma, and Jaideep Srivas-

tava. 2013. Bot Detection Based on Social Interactions in MMORPGs.
In International Conference on Social Computing, SocialCom 2013, Social-
Com/PASSAT/BigData/EconCom/BioMedCom 2013, Washington, DC, USA, 8-14
September, 2013. 536–543.

[18] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,
Kuansan Wang, and Jie Tang. 2020. GCC: Graph Contrastive Coding for Graph
Neural Network Pre-Training. In KDD ’20: The 26th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, August 23-27,
2020. 1150–1160.

[19] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. J. Mach.
Learn. Res. 21 (2020), 140:1–140:67.

[20] Yuri Seo, Rebecca Dolan, and Margo Buchanan-Oliver. 2019. Playing games:
advancing research on online and mobile gaming consumption. Internet Res. 29,
2 (2019), 289–292.

[21] Jianrong Tao, Jianshi Lin, Shize Zhang, Sha Zhao, Runze Wu, Changjie Fan, and
Peng Cui. 2019. MVAN: Multi-view Attention Networks for Real Money Trading
Detection in Online Games. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK,
USA, August 4-8, 2019. 2536–2546.

[22] Jianrong Tao, Jiarong Xu, Linxia Gong, Yifu Li, Changjie Fan, and Zhou Zhao.
2018. NGUARD: A Game Bot Detection Framework for NetEase MMORPGs.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD 2018, London, UK, August 19-23, 2018. 811–820.

[23] Ruck Thawonmas, Yoshitaka Kashifuji, and Kuan-Ta Chen. 2008. Detection of
MMORPG bots based on behavior analysis. In Proceedings of the International Con-
ference on Advances in Computer Entertainment Technology, ACE 2008, Yokohama,
Japan, December 3-5, 2008, Vol. 352. 91–94.

[24] Yuan Tian, Eric Y. Chen, Xiaojun Ma, Shuo Chen, Xiao Wang, and Patrick Tague.
2016. Swords and shields: a study of mobile game hacks and existing defenses.
In Proceedings of the 32nd Annual Conference on Computer Security Applications,
ACSAC 2016, Los Angeles, CA, USA, December 5-9, 2016. 386–397.

[25] Yonglong Tian, Dilip Krishnan, and Phillip Isola. 2020. Contrastive Multiview
Coding. In Computer Vision - ECCV 2020 - 16th European Conference, Glasgow,
UK, August 23-28, 2020, Proceedings, Part XI (Lecture Notes in Computer Science,
Vol. 12356). 776–794.

[26] Michail Tsikerdekis, Sean Barret, Raleigh Hansen, Matthew Klein, Josh Orritt,
and Jason Whitmore. 2020. Efficient Deep Learning Bot Detection in Games
Using Time Windows and Long Short-Term Memory (LSTM). IEEE Access 8
(2020), 195763–195771.

[27] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation Learning
with Contrastive Predictive Coding. CoRR abs/1807.03748 (2018).

[28] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using
t-SNE. Journal of Machine Learning Research 9 (2008), 2579–2605.

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA. 5998–6008.

[30] Shing Ki Wong and Siu-Ming Yiu. 2019. Detection on auto clickers in mobile
games. J. Wirel. Mob. Networks Ubiquitous Comput. Dependable Appl. 10, 3 (2019),
65–80.

[31] Jiarong Xu, Yifan Luo, Jianrong Tao, Changjie Fan, Zhou Zhao, and Jiangang Lu.
2020. NGUARD+: An Attention-based Game Bot Detection Framework via Player
Behavior Sequences. ACM Trans. Knowl. Discov. Data 14, 6 (2020), 65:1–65:24.

[32] Di Yao, Chao Zhang, Zhihua Zhu, Jian-Hui Huang, and Jingping Bi. 2017. Tra-
jectory clustering via deep representation learning. In 2017 International Joint
Conference on Neural Networks, IJCNN 2017, Anchorage, AK, USA, May 14-19, 2017.
3880–3887.

[33] Ka Yee Yeung and Walter L Ruzzo. 2001. An empirical study on principal com-
ponent analysis for clustering gene expression data. Bioinformatics 17, 9 (2001),
763–774.

[34] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He,
Yanming Shen, and Tie-Yan Liu. 2021. Do Transformers Really Perform Bad for
Graph Representation? CoRR abs/2106.05234 (2021).

[35] Hanyuan Zhang, Xinyu Zhang, Qize Jiang, Baihua Zheng, Zhenbang Sun, Weiwei
Sun, and Changhu Wang. 2020. Trajectory Similarity Learning with Auxiliary Su-
pervision and Optimal Matching. In Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI 2020. 3209–3215.

3375

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 FingFormer
	4.1 Preprocess
	4.2 Model Architecture
	4.3 Contrastive Learning Strategy

	5 Experiment
	5.1 Experiment Settings
	5.2 Synthetic Environment Comparison
	5.3 Offline Evaluation
	5.4 Online Evaluation

	6 Conclusion
	Acknowledgments
	References

