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ABSTRACT
Recently, data mining through analyzing the complex structure
and diverse relationships on multi-network has attracted much
attention in both academia and industry. One crucial prerequisite
for this kind of multi-network mining is to map the nodes across
different networks, i.e., so-called network alignment. In this paper,
we propose a cross-network embedding method CrossMNA for
multi-network alignment problem through investigating structural
information only. Unlike previous methods focusing on pair-wise
learning and holding the topology consistent assumption, our pro-
posed CrossMNA considers the multi-network scenarios which
involve at least two types of networks with diverse network struc-
tures. CrossMNA leverages the cross-network information to refine
two types of node embedding vectors, i.e., inter-vector for network
alignment and intra-vector for other downstream network analy-
sis tasks. Finally, we verify the effectiveness and efficiency of our
proposed method using several real-world datasets. The extensive
experiments show that our CrossMNA can significantly outperform
the existing baseline methods on multi-network alignment task,
and also achieve better performance for link prediction task with
less memory usage.
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• Computing methodologies → Learning latent representa-
tions; • Information systems→ Data mining.
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1 INTRODUCTION
The unprecedented growth of the diverse information has pro-
duced a large volume of networks, such as social networks, citation
networks, and biological networks, etc. Nowadays, people usually
participate in multiple networks, on the one hand, each network can
depict the topological structure of all participants corresponding to
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some particular relationships; on the other hand, all the networks
can be related by the same participants/nodes. In recent years,
many approaches have been proposed to mine the potential infor-
mation inherent in these related networks, such as cross-network
recommendation [42], mutual community detection [39] and ge-
netic diseases classification [33], etc. Although the related networks
can share the same participants, they are mostly isolated in differ-
ent networks without any known connections accordingly among
them. Therefore, a crucial prerequisite for multi-network mining
is to map the nodes/participants among these related networks,
i.e., so-called network alignment. In the field of network alignment,
the shared participants among the networks are defined as anchor
nodes, as they act like anchors aligning the networks they partici-
pate in, and the relationships among anchor nodes across networks
are called anchor links [12]. In many cases, a few anchor links
can be known beforehand, for example, some users in Foursquare
may leave their corresponding accounts of Twitter, but most of the
correspondences are unknown. Therefore network alignment aims
at inferring these unknown or potential anchor links among the
networks.

In recent years, many literatures have been proposed to handle
the network alignment problem [13, 16, 37, 40, 43, 44]. However,
there still exist some issues that need further concern. First, most
existing works only consider the two-network scenarios or perform
pair-wise learning in multi-network applications. However, in
real-world a network is usually related to multiple networks. Thus
the pair-wise learning methods can ignore much valuable comple-
mentary information across the multiple networks. Second, many
previous works hold the assumption of topology consistency,
which indicates that a node tends to have a consistent connectivity
structure across different networks. Although the same node may
show some similar features among the networks, the differences
between the network semantic meanings can lead to quite diverse
local structure of this node in each network, and this assumption
can be easily violated in many applications [16, 23]. Thereby these
methods can make misleading alignment in the multi-network sce-
narios. Third, most previous works heavily rely on attributes, e.g.,
the username, gender or other profile information. However, the
attribute information is usually incomplete and unreliable [16] or
unavailable [1], thus these attribute-based methods are not applica-
ble in many realistic scenarios.

Keeping these problems in our mind, we, in this paper, study the
network alignment problem in a multi-network scenario, wherein
the number of networks is at least two with no attribute infor-
mation available, in addition that the topology structure of each
network can be diverse. Taking into account the effectiveness of
preserving network structures and the efficiency of calculation in
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continuous vector space, we propose a novel cross-network em-
bedding method for multi-network alignment, namely CrossMNA.
CrossMNA can integrate cross-network information to refine much
more powerful embedding vectors for alignment tasks, and can also
be effectively applied to other downstream multi-network analysis
tasks, such as link prediction. Compared to previous embedding-
based network alignment methods [10, 15, 45] or multi-network
embedding methods [19, 35, 38], CrossMNA can also dramatically
decline the space overhead especially in large-scale multi-network
scenarios.

In CrossMNA, an additional vector named network vector is
proposed to extract the semantic meaning of the network, which
can reflect the difference of global structure among the networks.
What’s more, two kinds of embedding vectors are refined for each
node: (i) inter-vector, which reflects the common features of the
anchor nodes in different networks and is shared among the known
anchor nodes; and (ii) intra-vector, which preserves the specific
structural feature for a node in its selected network and is generated
through the combination of network vector and intra-vector. This
combination strategy can save much more space overhead but not
sacrifice the performance. We also propose a transformation matrix
to align these vectors with different dimensions. We summarize
our contributions as follows:

(i) We propose a novel cross-network embedding approach
CrossMNA to deal with network alignment in a more gen-
eral scenario, where the number of networks is at least two
with no attribute information available, in addition that the
structure of each network can be quite diverse.

(ii) CrossMNAdeclines the physicalmemory overhead formodel
storage to a large extent compared to other embedding based
network alignment methods or multi-network embedding
models, which enables our CrossMNA appropriate to tackle
today’s large-scale multi-network applications.

(iii) Extensive experiments show that our CrossMNA signifi-
cantly outperforms existing network alignment methods, i.e.,
achieves 10% to 20% improvement with the Twitter dataset
and 10% with the arXiv datasets. Furthermore, CrossMNA
can achieve 5% improvement in link prediction mission with
the Twitter dataset compared to existing multi-network em-
bedding methods.

We organize the remains of our work as follows. Section 2 states the
problems of multi-network alignment. We investigate several inher-
ent vulnerabilities in previous works and propose the challenges
in multi-network alignment. We formally describe our CrossMNA
in Section 3, validate our approach by analyzing extensive experi-
ments in Section 4, present related work in Section 5 and conclude
our work in Section 6.

2 PROBLEM STATEMENT
As a crucial prerequisite for many cross-network applications, net-
work alignment aims to establish the node correspondences across
different networks. Therefore, in recent years, network alignment
has become a hot spot in both academia and industry. However,
there still exist some problems in currently existing works:

(i) Topology Consistency. Many previous works [2, 3, 10, 13,
14, 29, 41, 45] hold the assumption of topology consistency, namely

the same node has a consistent connectivity structure across dif-
ferent networks. For example, NetAlign [3] utilizes max-product
belief propagation based on the network topology. REGAL [10]
proposes an embedding-based method based on the assumption
that nodes with similar structural connectivity or degrees have a
high probability to be aligned. Although one node may share some
similar features in related networks, its local structural connections
can be entirely different in each network due to the distinctiveness
in network semantic meanings, such as the types of interaction
between proteins in bioinformatics. Some works have proved that
topology consistency can be easily violated in many multi-network
scenarios. For example, in bioinformatics, different types of genetic
interactions can construct diverse network structures [23]. Another
similar example can also be found in online social network sites [16],
such as Twitter and Facebook, where usersâĂŹ behavior may be di-
vergent and platform dependent, making different social platforms
show various connection relationships. Thereby, previous methods
may lead to sub-optimal or even misleading alignments in these
scenarios.

(ii) Pair-Wise Learning. Most previous works only consider
the two-network scenarios or perform pair-wise learning in the
multi-network scenario. However, if we jointly consider all related
networks, we can obtain much more useful information to benefit
the node matching. Figure 1 illustrates a toy example with three
related networks. If we only consider each pair of networks, it is
hard to infer the node v4 in network G3 is the counterpart of the
node v1 in network G1 and G2. However, if we consider the three
networks together, this alignment can be easily found.

(iii) Attributes Dependence. Many previous works utilize the
attribute information, like username or gender in social networks,
to directly match nodes in different networks [26] or make use of
the attributes to guide model learning structure information [44].
However, on the one hand, users may deliberately hide certain
pieces of personal information or provide false data on their se-
lected networks [16]. On the other hand, network data available
for research is usually anonymized by the service providers for
privacy concerns, where the attribute information is removed or
replaced with meaningless unique identifiers [41]. Therefore, the
methods based on attribute information are not general in many
applications.

Considering the issues above, we intend to study the network
alignment problem in a more general scenario wherein the number
of networks is at least two, only topological structure available,
even the networks may have different structures. In addition to the
importance and novelty of this problem, we present the following
challenges:

• Semantics diversity. The diversities in network semantics
lead to the different interactional behaviors of the same node
in each network, which can effect the accuracy of the node
matching. Moreover, the more networks taken into consider-
ation, the more complicated the problem is. Therefore, how
to alleviate the impact of diverse network semantics on node
matching is a big challenge.
• Data imbalance. The data imbalance has two aspects. First,
the size of each network may vary considerably, including
the numbers of nodes or edges in each network. Second, the



Figure 1: An illustration of a multi-network scenario. CrossMNA learns two types of embedding vectors, i.e., network vector
for each network and inter-vector for each node, which is used for node matching. The intra-vector, which can be adopted for
other downstream tasks, is combined by these two types of embedding vectors

number of anchor links between each pair of networks can
be unequal. It is obvious that the previous pair-wise learning
methods inevitably suffer from the data imbalance problem
as they only consider each pair of networks. Thus how to
make full use of the information across all the networks to
deal with the data imbalance problem is another challenge.
• Model Storage. Network embedding is a practical approach
to extract structural features of the node and has been ap-
plied in some network alignment methods [10, 15, 45]. How-
ever, in large-scale multi-network scenarios, it is essential
to take into account the space overhead of the methods.
Previous embedding-based methods need to generate the
embedding vector for each node in each pair of networks
in multi-network scenarios, and this takes too much stor-
age space. Thereby, how to make overhead cheaper but not
sacrifice the performance is what we should concern.

To address the challenges above, we propose a cross-network
embedding based multi-network alignment method CrossMNA.
It extracts an extra feature vector named network vector for each
network, which reflects the difference of global structure among
the networks. This means if the global structure of two networks is
similar, their network vectors will be close in vector space. For each
node in a network, we propose two types of embedding vectors:
inter-vector and intra-vector. The former depicts the commonness of
anchor nodes in different networks and is shared among the known
anchor nodes. The latter reflects the specific structural feature of
this node in its selected network but is generated through a combi-
nation of the network vector and inter-vector. By jointly training
all the networks, CrossMNA can refine powerful inter-vector for
network alignment tasks, and intra-vector for other downstream
multi-network analysis tasks. What’s more, the shared inter-vector
and the combining intra-vector can significantly save space over-
head without sacrificing the performance.

3 CROSSMNA: A MULTI-NETWORK
ALIGNMENT APPROACH

3.1 Problem Formulation
In this work, we suppose the networks are unweighted and all the
edges are directed, as an undirected edge can be divided into two
directed edges. For the sake of easy understanding, we follow the
definitions of network alignment as reported in [41, 42].

Definition 1 (Multiple Aligned Networks).We define a set of net-
works G = ((G1,G2, · · · ,GN ), (A (1,2) ,A (1,3) , · · · ,A (N−1,N ) )) as
multiple aligned networks, where Gi , i ∈ {1, 2, · · · ,N } represents
the i-th network in the set, N is the number of related networks,
and A (i, j ) , i, j ∈ {1, 2, · · · ,N } denotes the set of anchor links be-
tweenGi andG j . We define each networkGi as {V i ,Ei }, whereV i

is the set of nodes in Gi and Ei is the set of links.
Definition 2 (Anchor Link).Given each two networksGi andG j ,

we define an anchor link between them as (vik ,v
j
k ) ∈ A

(i, j ) , where
vik and v jk is the anchor node in networks Gi and G j respectively.
The anchor links in multiple networks following the transitivity law
defined in [41], where if (vik ,v

j
k ) ∈ A

(i, j ) and (vik ,v
h
k ) ∈ A

(i,h) ,
then (vhk ,v

j
k ) ∈ A

(h, j ) . For notational convenience, the nodes in
different networks with the same subscript are the known anchor
nodes.

Definition 3 (Multi-Network Alignment Problem). Given a set
of networks and part of known anchor links among the networks,
this problem is to discover the unknown or potential anchor links.
It is noteworthy that the networks are partially aligned [42], which
means not all the nodes have counterparts in other networks, and
the anchor nodes follow the one-to-one matching constraint [41].

3.2 Cross-Network Embedding
As stated before, the different network semantic meanings lead to
diverse interactional behaviors of the anchor nodes, which influ-
ences the global structure of the networks. For instance, in Figure 1
the anchor node v1 shows different connection relationships in G1

andG2. However, as the same entity, the anchor node should also
display some common features across the networks. For example,



suppose that we have known that node v4 inG3 is the counterpart
of node v1, we can observe that the anchor node v1 tends to inter-
act with nodes v2 or v3 in each network. Therefore, we propose
CrossMNA in multi-network scenarios under the assumption that
an anchor node in a selected network can both show some similar
structural features with its counterparts and distinctive connection
relationships due to its network semantic meaning. It is noteworthy
that if the related networks have the same semantic meaning, the an-
chor nodes will display consistent connection relationships among
these networks, which is the topology consistent assumption as
previous works hold.

It is obvious that the common features among the anchor nodes
are what we need for network alignment. To this end, we propose an
inter-vector u to preserve the common features among the anchor
nodes. Through training, we hope the inter-vector of an unknown
anchor node can be close to its counterparts in vector space. Nev-
ertheless, this inter-vector is hard to be learnt directly, as there
is no direct correlation between the unknown anchor nodes. For
example, there is no direct relationship between the node v1 in G1

and the node v4 inG3. Therefore, we have to learn the inter-vector
indirectly.

On the other side, it is straightforward to extract structural fea-
tures of nodes in a network via network embedding methods, which
named intra-vector v in CrossMNA. This type of vector contains
both the commonness among counterparts and the specific local
connections in its selected network due to the semantics, so it can-
not be applied for node matching unless we can divestiture the
impact of network semantic. Thus, we are motivated to present
the following equation to build a correlation among intra-vector,
inter-vector, and network semantics:

vki = ui + rk , (1)

where vki is the intra-vector of node vi in network Gk which can
be easily learnt, ui is the inter-vector of node vi and its known
counterparts are shared this vector, rk is the network vector which
can extract the unique characteristics of Gk and reflects the global
difference among the networks. Thus, we can refine the inter-vector
of the anchor nodes indirectly by training the combining-based
intra-vectors.

We take the toy multi-network in Figure 1 as example for further
explanation. Considering the anchor node v1, it should share some
common features among the networks and this commonness is
what the inter-vector should represent. Meanwhile, as G1 and G2

are two different networks, the local connections of v1 can also be
distinct because of the diverse network semantic meanings. Follow-
ing Equation (1), we can give the intra-vector of node v1 in G1 and
G2 as:

v11 = u1 + r1,

v21 = u1 + r2.
(2)

On the one hand, through jointly training the intra-vectors, the
shared u1 can store the complementary information between the
two networks: for example v1 can be connected to v2 and v3 at the
same time. On the other hand, r1 and r2 can reflect the global differ-
ences between the two networks owing to the common information
transmitting in u1.

Then we consider the node v4 in G3. Its intra-vector can be
writen as:

v34 = u4 + r3. (3)
By learning the structural information in G3, v34 can contain some
common features similar to v11 or v

2
1, for example v4 also tends to

interact with v2 and v3. Owing to to other known anchor links
between G3 and the other networks, the network vector r3 can
preserve the specific semantic features ofG3. Therefore, by peeling
off the impact of network semantic difference via u4 = v34 − r

3, the
inter-vector u4 can reflect much more similar features with u1, by
which we can infer that v4 is the counterpart of v1.

The meanings of the inter-vector and intra-vector are different,
they can be in different vector spaces. Therefore, we propose a
transformation matrixW to align them with different dimensions
and rewrite the Equation (1) as:

vki =Wui + rk , ui ∈ Ud1 , vki ∈ R
d2 , (4)

where Ud1 and Rd2 are two different vector spaces with dimension
d1 and d2 respectively. W, ui and rk are the parameters need to
learned in CrossMNA.

From the above discussion, we can find that theoretically the
more related networks we considered, the more accurate the node
matching is. Therefore, CrossMNA needs to jointly train all the
related work, and we thus propose the total objective function as:

J =
∑
k

J k , (5)

where J k is the objective function of each Gk , which tries to
preserve the structural information of each node in Gk . Following
[31], for each directed edge (vki ,v

k
j ) inG

k , we define the conditional
probability of vkj generated by vki as:

p (vkj |v
k
i ) =

exp (vki · v
k
j )∑

vkz ∈V k exp (vki · v
k
z )

=
exp ((Wui + rk ) · (Wuj + rk ))∑

vkz ∈V k exp ((Wui + rk ) · (Wuz + rk ))

, (6)

and the objective of each network Gk can be defined as:

J k =
∑

(vki ,v
k
j )∈E

k

p (vkj |v
k
i ). (7)

By jointly optimizing, the known anchor nodes will play their
roles as much as possible to transmit the structural information
through the shared inter-vector u, making this vector contain the
commonness among the anchor nodes. At the same time, through
Equation (6), the intra-vector of each anchor node can preserve
the diverse structural features in different networks, which makes
the network vector rk extract the specific feature of its own global
structure.

For each unknown anchor nodes vki , although we cannot di-
rectly make connections to its counterparts, its combining-based
intra-vector can preserve some similar features as its counterparts
in other networks. By peeling off the impact of the network seman-
tic meaning rk , the inter-vector ui will display the characteristic



features as its anchor nodes do, which can be effectively used for
node matching.

To speed up the training process, following word2vec [21], we
perform negative sampling to approximate the objective function
(6) as:

E(vki ,v
k
j )
= −loдσ (vki · v

k
j ) −

∑
vkz ∈P (z )

loдσ (−vki · v
k
z ), (8)

where σ (x ) = 1/(1 + exp (−x )) is the sigmoid function and the
distribution P (v ) ∝ d3/4v , where dv is the degree of node v in the
given network. Therefore, we rewrite the objective function of (5)
as the total loss function of the whole multi-network:

L =
∑

k ∈[1,N ]

∑
(vki ,v

k
j )∈E

k

−loдσ (vki · v
k
j ) −
∑
z

loдσ (−vki · v
k
z ). (9)

We adopt Adam[11] to minimize the total loss function.
As we know, in real-world, it is ubiquitous to meet the data im-

balance problem among multiple networks. Previous methods can
easily suffer from the data imbalance problem as they under the
pair-wise learning scheme. However, our CrossMNA can make up
this problem, because CrossMNA jointly trains all the networks and
transmits the complementary information among the known an-
chor nodes through the shared inter-vectors, which can alleviate the
influence of the data imbalance problem. What’s more, compared to
existing embedding-based methods, CrossMNA is much more light-
weight. Instead of generating embedding vector for each node in
each pair of networks, CrossMNA shares the common intra-vector
across the networks and uses a more flexible combining-based vec-
tor generation strategy as defined in Equation (4) to generate the
intra-vector for each node in each network. No matter compared to
the embedding-based network alignment methods or the existing
multi-network embedding methods, CrossMNA can always signifi-
cantly reduce the memory overhead, and we will compare the size
of CrossMNA with other models in Section 4.7.

3.3 Multi-Network Mining
After training, we can get two types of embedding vectors for
each node: the intra-vector reflects the structural information of a
node in a selected network, which is suitable for the intra-network
analysis tasks, while the inter-vector interprets the commonness of
the anchor nodes in different networks, which can be effectively
applied to multi-network alignment task.

A naive way to find the alignments for a node is to compute
all pairs of similarities between the inter-vectors, which is time-
consuming. However, in practice, we usually only need to find the
soft alignments for each node by returning its top-α most likely
nodes in other networks. So following [10], we use the k-d tree
data structure to accelerate similarity search [4] in the matching
process. We here use cosine similarity to define the distance of two
nodes in vector space.

In some applications, we can get the complete groundtruth
among multiple networks beforehand, which means all the aligned
links are known. As our CrossMNA is a cross-network embedding
approach, it can be easily exploited in these applications to make the
data mining tasks on multiple networks more actionable. During

training, the inter-vector takes the role of transmitting the struc-
tural information among the anchor nodes. Therefore, CrossMNA
can preserve the complementary information across multiple net-
works. At the same time, because we extract the specific features
of each network into its network vector, the intra-vector which is
combined by the inter-vector and the specific network vector, can
both keep the complementary information of its counterparts in
other networks and the distinctive properties of its selected net-
work. This can be effective in many downstream multi-network
analysis tasks, such as link prediction and vertex identity.

4 EXPERIMENTAL EVALUATION
In this section, we perform a set of experiments to validate our pro-
posed CrossMNA. We first compare our method with several state-
of-the-art methods on the multi-network alignment task. Then,
to verify the effectiveness of CrossMNA in extracting useful fea-
tures of the nodes, we also compare our CrossMNA with several
multi-network embedding methods on link prediction tasks.

4.1 Dataset Description
We employ three real-world multi-network datasets from different
fields, e.g., social platform, bioinformatics, and academics. To reflect
the data imbalance problem in each dataset, we present the distri-
bution of anchor links between each pair of networks in Figure
2(a) and size of each network in Figure 2(b). We can find that the
scale of each network vary greatly in all datasets and distribution
of anchor links can be uneven, especially in Twitter and SacchCere.
We also present the global structural similarities between each pair
of networks, by comparing the common neighbors reachable in
three steps of the anchor nodes. From Figure 2(c) we can find that
the related networks have quite diversity structures, especially in
Twitter and SacchCere. We detail the datasets as follows:

arXiv1 [6] consists of various networks in terms of different
arXiv categories. There are 14,489 nodes, 59,026 coauthorship con-
nections, and 13 networks. The number of anchor links among the
networks is 23,626.

Twitter1 [24] This dataset is a specific Twitter dataset which
focused on People’s Climate March in 2014. It makes use of 3 net-
works, corresponding to retweet, mentions, and replies. 102,439
nodes, 353,495 edges and 55,600 anchor links are included.

SacchCere1 [7, 30] is a subset of BioGRID, which is a public
database that archives and disseminates genetic and protein inter-
action data from humans and model organisms. It contains 6,570
nodes, 282,755 connections and 7 networks, each represents one
type of genetic interaction. There are a total of 55,831 anchor links.

4.2 Baseline Methods
Multi-Network Alignment. To show the effectiveness of our
method in addressing the multi-network alignment problem, we
compare with four different baseline methods through only using
network structure information.

NetAlign [3] proposes the message passing algorithms to match
networks under unsupervised schemas.

1https://comunelab.fbk.eu/data.php



(a) Distribution of anchor links. (b) Size of networks. (c) Global similarity between networks.

Figure 2: Detailed information of the datasets. (a) Each grid represents |A(i, j ) |/|A|. (b) Each dot is a network, the ab-
scissa/ordinate represents the number of nodes/edges. (c) Each grid reflects the global similarity between two networks.

FINAL [43] proposes a family of algorithms to align attributed
networks. It formulates network alignment from an optimization
perspective referring to the alignment consistency principle.

REGAL [10] is an unsupervisedmulti-network alignmentmethod,
which extracts similarity-based representations among graphs and
infers the soft alignments by comparing the learnt embedding vec-
tors.

IONE [15] is a state-of-the-art network embedding based method
under semi-supervised schemes, which solves both the network
embedding problem and the user alignment problem simultaneously
with a unified optimization framework.

As NetAlign and FINAL both require the prior alignment infor-
mation, following previous work we construct a degree similarity
matrix and take the top-loд |V | entries for each node.

Intra-Link Prediction. To verify the ability of CrossMNA on
extracting effective features of the nodes among the networks. We
also compare our proposed CrossMNA with five network embed-
ding methods on link prediction task, which are divided into two
categories in terms of single-network embedding or multi-network
embedding:

DeepWalk [27] is a typical network embedding method that
learns vertex representations based on single network structures. It
performs a random walk on the network to obtain vertex sequences
and conducts Skip-Gram model to train the sequences.

LINE [31] is another network embedding model which aims at
learning node embeddings in a large-scale network. It minimizes a
loss function to preserve both first-order and second-order proxim-
ity between nodes.

node2vec [8] defines a flexible notion of a nodeâĂŹs neighbor-
hood and propose a biased random walk, which is a trade-off be-
tween Breadth First Search and Depth First Search.

PMNE [17] is a multi-network embedding method which pro-
poses two simply merged approaches and a Co-analysis method to
obtain one overall embedding for each node. In our experiments,
we compare with its final Co-analysis method. The Co-analysis
PMNE performs a biased random-walk across each network and
conducts Skip-Gram model to train the node sequences.

MELL [19] is a multi-network embedding method which simul-
taneously learns the embedding vector of each node and a layer
embedding of each single network, using all of the network struc-
tures.

4.3 Experiment Configuration
The parameters of the compared methods are set as follows: For
FINAL, we follow the default setting, i.e. {α , tmax } = {0.3, 30}. For
REGAL we set the maximum hop distance K = 2; For Deepwalk,
we set walks per vertex as 20, window size as 5 and walk length as
80; For LINE, we employ both first-order and second-order prox-
imity and obtain representations via concatenation, and we set the
negative samples k = 5; For node2vec, we empirically set p = 2
and q = 0.5. For PMNE and MELL, we follow their default set-
tings, i.e., {α ,p,q} = {0.5, 0.5, 0.5}, {k, λ, β ,γ } = {4, 1, 1, 1}. For fair
comparisons, we set the same node dimension d = 200 for all
embedding-based methods in network alignment, and d = 100 for
each network embedding model in link prediction. For our method
CrossMNA, we thus set d1 = 200, d2 = 100 and the number of
negative samples as 1 to speed up the training process. We use the
inter-vector u for network alignment task and the intra-vector v
for link prediction task.

For multi-network alignment task, we randomly remove part
of the anchor links as the test set and the rest as the training set.
We compare the precision of the soft alignment for each method.
We first introduce the Precision(i, j)@α as the evaluation metric of
mapping nodes from Gi to G j :

Precision(i, j)@α =
|CorrectNodes(i, j)@α |

|UnMappedAnchors(i, j ) |
, (10)

where |UnMappedAnchors (i, j ) | is the number of unknown anchor
links betweenGi andG j and |CorrectNodes (i, j )@α | is the number
of the correct alignments fromGi toG j in top-α choices. Therefore,
the evaluation metric on multi-network alignment can be defined
as:

Precision@α =
1

N (N − 1)
∑
i

∑
j,i

Precision(i, j)@α , (11)

where N is the number of networks.
For intra-link prediction task, we randomly split all edges into

two sets for training and testing respectively. We also randomly
sample an unconnected node pair as a negative edge for each pos-
itive edge in the test set and use both the positive and negative
edges for testing. We here adopt a standard evaluation metric ROC-
AUC [9] in our experiments.



(a) P@α vs. α . (b) P@30 vs. Training ratio.

Figure 3: Performance with Twitter.

(a) P@α vs. α . (b) P@30 vs. Training ratio.

Figure 4: Performance with SacchCere.

(a) P@α vs. α . (b) P@30 vs. Training ratio.

Figure 5: Performance with arXiv.

4.4 Performance Evaluation
Multi-Network Alignment. The experimental results are pre-
sented in Figure 3-5. We first keep the training ratios to 0.5 and give
the results of different@α settings, which is the subfigure (a) for
each dataset. Then we vary the training ratio from 0.1 to 0.9 with
an interval of 0.1 and evaluate the Precision@30 of each method,
which is the subfigure (b) for each dataset. We remove the results
of training ratio 0.8 and 0.9 on SacchCere, because most networks
have few anchor nodes in the test set, leading to the unstable per-
formance of each method. We only give P@1 for NetAlign as it
aims to find the hard matching for the node. From the results, we
have the following observations:

(i) CrossMNA can outperform all the baselines in each dataset on
almost all training ratios. We can gain 10% to 20% improvement on
Twitter dataset than the state-of-the-art method IONE, and 5% to
12% improvement on SacchCere. In arXiv dataset, CrossMNA can
also achieve about 10% improvement on different training ratios.
Furtherly, even when the training ratio is very small, such as 10%
and 20%, CrossMNA can still achieve the best performance and get
5% to 10% improvement. This result demonstrates that our method
is still effective when the known anchor links are rare, which is a
very common problem in many real-world applications.

(ii) The unsupervised methods NetAlign, REGAL, and FINAL
show poor performance on all datasets, because the structures of
each network do not follow the topology consistent assumption
they hold, which leads to the misleading alignments in all datasets.
The state-of-the-art embedding-based method IONE, however, can
achieve good performance on each dataset. However, it only con-
siders the pair-wise learning, thus it ignores many useful comple-
mentary information across different networks. What’s more, it
does not explicitly consider the problems of distinctive network

P (i, j )@30 1→2 2→1 1→3 3→1 2→3 3→2
IONE 0.056 0.054 0.035 0.032 0.4601 0.4589
CrossMNA 0.1327 0.1106 0.2817 0.1676 0.5863 0.4210

Table 1: Results of alignment between each pair of networks
in Twitter dataset. The training ratio is 50% and 1→2 denotes
matching nodes from the 1st network to the 2nd network.

structures, resulting in the mismatching of some anchor nodes with
different local structures. Therefore, it is hard to achieve better
performance when the networks have quite different structures.

(iii) Combined with Figure 2, we can find that most networks
in arXiv dataset tend to have similar global structure, and the an-
chor nodes are more evenly distributed across networks. Therefore,
IONE can achieve good performance on this dataset, e.g., IONE
can even gain better performance on P@1 when the training ratio
is 50% than CrossMNA. However, CrossMNA can take advantage
of the jointly learning all the networks, so our CrossMNA can
have a stable improvement of about 10% on different ratios. For
SacchCere dataset, as the semantic meanings are different among
the networks, the structure of each network is diverse, which pre-
vents the baselines from achieving good results. However, as we
jointly learn from all the networks, the abundant complementary
information among the networks can improve the quality of learnt
embeddings, alleviating the problem above. For Twitter dataset,
the state-of-the-art method IONE cannot achieve satisfactory re-
sult due to two reasons: (i) the sizes of networks vary a lot and
the distribution of anchor nodes is uneven in this dataset, e.g., the
1st network has nearly 100,000 nodes but 3nd network has only
about 8,000 nodes and most anchor links are between the 1st and
2nd networks; (ii) the networks show diverse structures, e.g., the
1st network shows quite different topology structure compared
to the other two networks. For better understanding, we present
the performance of alignment between each pair of networks on
Twitter in Table 1. We can observe that IONE can gain a comparable
result with our CrossMNA in alignment between the 2nd and 3rd
networks, which have the similar topology structure. However, for
alignment between the 1st-2nd networks and the 1st-3rd networks,
IONE cannot achieve satisfactory results because the size of the
networks vary a lot and they show quite diversity global structures,
which we can find in Figure 2(c). However, as our CrossMNA ex-
tracts an extra network vector to peel off the influences of network
semantic on node’s local connections, the inter-vector can preserve



Dataset arXiv SacchCere Twitter
30% 50% 80% 30% 50% 80% 30% 50% 80%

DeepWalk 87.86 94.41 98.12 69.20 73.96 78.29 57.09 59.96 63.74
LINE 75.05 85.73 94.75 60.54 65.05 68.87 53.12 52.97 53.22

node2vec 88.06 94.57 97.11 71.15 76.33 80.16 56.84 61.22 65.93
PMNE 90.12 94.47 95.24 77.61 79.85 81.35 61.12 70.72 75.91
MELL 93.51 96.30 98.84 76.18 79.92 81.21 70.64 75.89 79.84

CrossMNA 96.46 97.53 99.19 76.88 81.12 82.59 75.85 80.48 85.29
Table 2: AUC score of link prediction task.

Figure 6: Parameter study on multi-network alignment. Figure 7: Parameter study on link prediction.

the common features among the anchor nodes as much as possible,
which shows significant improvement on this dataset.

To summarize, the above observations illustrate our method is
significantly effective and appropriate to address multi-network
alignment problem.

Intra-Link Prediction. Besides applied on network alignment,
the node embedding learnt by our CrossMNA can also be adopted
in other downstream network analysis tasks, e.g., link prediction
and vertex identity. We take the link prediction task as an example
to evaluate the quality of the learnt features. We compare with five
state-of-the-art methods, three for the single-layer network and
two for multiple networks. For the models designed for the single-
layer network, we train a separate embedding for each network
and use that to predict the links of the corresponding networks. We
evaluate the AUC values of different models with the training ratio
30%, 50%, and 80% and propose the results in Table 2.

Upon the experimental results, we find that for all the datasets,
our CrossMNA can achieve comparable performance or even signif-
icantly outperform all the baselines. What calls for special attention
is that CrossMNA can achieve a nearly 5% improvement on Twitter
dataset on all the training ratios. This is because the inter-vector
in CrossMNA plays a role to transmit the complementary informa-
tion across the networks while the network vectors can store the
distinctive properties of each network, which make the combining-
based intra-vector integrate the cross-network information without
sacrificing the distinctive properties in its selected network. To
summarize, the above results indicate the effectiveness of features
refined by our method in multi-network mining tasks.

4.5 Parameter Sensitivity
There are two parameters in our method: the dimension of inter-
vector d1 and intra-vector d2. To explore the influence of the param-
eters on the model performance, we set d1 = d2 = 100 as default,
pick up one parameter each time and vary that parameter while

fixing another to check this parameter’s impact on the tasks of net-
work alignment and link prediction. For network alignment task,
we keep the training ratio to 50% and use the P@30 as the metric.
For link prediction task, we also keep the training ratio to 50%.

From Figures 6 and 7, we can observe thatd1 has a great influence
on both tasks, and as d1 grows the performance is significantly
improved. While d1 is larger than a threshold, the performance will
be stable, and the threshold is related to the size of the network.
Whend1 is larger than 200 on arXiv and SacchCere, the performance
will shift towards a steady distribution. However, d1 = 300 has
a significant improvement than d1 = 200 on Twitter dataset in
alignment task, as the scale of this dataset is very large. We also
find that d2 has a relatively smaller effect on the performance if
d1 chooses a suitable number. Upon these observations, we are
motivated to set a relative larger d1, such as 200, 300 and a very
small d2, such as 30, 50 to save the memory in practice.

4.6 Case Study
In this section, we perform a set of experiments to explore whether
CrossMNA can gain better performance with more related net-
works taken into account. To make the experimental results more
convincing, we choose the arXiv dataset which has the most num-
ber of networks. This means the relationships among the networks
are very complicated.

We vary the number of networks from 2 to 13 and set the training
ratio to 50%. We perform this experiment 10 times, and at each
time we shuffle the order of the networks which are taken into
consideration. We calculate the average score and present the result
of P@30 in Figure 8. We can observe that as the number of networks
increases, the overall trend of precision also goes up. These results
indicate that the complementary information among the networks
benefits the result of alignment, and the more related networks
considered, the better performance our CrossMNA can achieve.



Figure 8: Precision w.r.t. N . Figure 9: Memory use comparisons among multi-network embedding methods.

model number of parameters p=0 p=0.1 p=0.2
IONE d · (N − 1)N |V | 3051.75 (MB)
REGAL d · N |V | 762.93

CrossMNA d1 · |V | (N − Np + p) + 763.01 701.21 640.94
d2 · N + d1 · d2

Notes:

In practice, we usually set d2 ≪ d1 ≈ d .
p denotes the ratio of known anchor links.

Table 3: Space complexity analysis among embedding-based
network alignment methods.

4.7 Scalability
In this section, we explore the scalability of our CrossMNA. Con-
cretely, we analyze the space complexity and time complexity of
our method respectively.

4.7.1 Space Complexity Analysis. As we know, in real life the net-
works could be very huge. In large-scale multi-network analysis
tasks, if we learn embeddings for all nodes in each network, the
storage issue could be a big challenge. Therefore, we ought to ana-
lyze the space complexity of the embedding-based models. We first
analyze the number of parameters in each model. Then we perform
a set of experiments to show the actual space overhead with regard
to the size of the network. For convenience, we assume that each
network shares the same set of nodes. We here use a subgraph of
Youtube [32] and adopt randomized permutation to generate multi-
ple networks. We analyze the embedding-based network alignment
methods and the multi-network embedding methods respectively.

From Table 3, we observe that IONE inevitably takes too much
memory especially when many related networks exist. Given IONE
belongs to pair-wise learning, it needs to generate embeddings for
each pair of networks. Unlike IONE, REGAL saves much space as it
can directly trainmultiple networks together owing to the randomly
sampling landmarks strategy to approximate the similarities among
nodes. For our CrossMNA, because of jointly training multiple
networks and the combination strategy, it only generates the inter-
vector for the node and the network vector for each network. It is
noteworthy that the inter-vector is shared among the known anchor
nodes, so the more the known anchor nodes, the less space our
CrossMNA takes. For easy understanding, we give an example with
five networks and 100,000 nodes and present the space overhead
with different ratios of the known anchor links. We set d = d1 =
200,d2 = 50. We can find that even in the extreme case where

model number of parameters
DeepWalk/LINE d · N |V |

PMNE d · |V |
MELL d · N ( |V | + 1)

MTNE [35] d · (N + 1) |V |
SMNE [38] d · |V | + s · N |V | + d · s · N
CrossMNA d1 · |V | + d2 · N + d1 · d2

Notes:

s is the dimension of typed relation vector in SMNE and s ≪ d .

Table 4: Space complexity analysis among multi-network
embedding methods.

there is no known anchor link, our method can still take up nearly
the same amount of space compared to REGAL. When there are a
few known anchor links, our CrossMNA can take advantage of its
combination strategy and show less space overhead.

Then we compare CrossMNA with existing multi-network em-
bedding methods. From Table 4, we can find that PMNE has the
least number of parameters among all the methods. Compared to
other methods, the size of SMNE is relatively smaller as its hyper-
parameter s can be set as a small number. However, our CrossMNA
can take the smallest memory overhead in most cases, because we
do not need to generate the embedding vector for each node in each
network, which requires dN |V | parameters. We use the strategy of
combining the common inter-vector and the network vector via a
transformation matrix to generate the vector for each node in each
network. Therefore CrossMNA only generates d1 |V | + d2N + d1d2
parameters, where d1 ≈ d and d2 can be a very small number. To
show the difference more clearly, we extend the size of a multi-
network in the number of networks and nodes respectively, and
present the memory overhead of each model in Figure 9. We can ob-
serve that CrossMNA and PMNE are significantly lighter than other
models, and as the size of the network increases, the space overhead
of CrossMNA and PMNE grows very slowly. However, as PMNE
merges the information from all networks into one type of embed-
ding, it inevitably loses the distinctive information in each network
as shown in our previous experiments. Thus our CrossMNA is dra-
matically space efficient for large-scale multi-network applications
compared to existing methods.

4.7.2 Time Complexity Analysis. The runtime of CrossMNA is in
two parts: learning cross-network embedding and matching nodes
through vectors comparison. The total time complexity of learning



embeddings is approximately O (tN (d1d2 |V | + d2 |E |)), where t is
the number of iterations, N denotes the number of networks, and
|V |, |E | denote the number of nodes and edges in each network
respectively. The time complexity of finding soft alignment between
each two networks is O ( |V |loд |V |).

5 RELATEDWORK
5.1 Network Alignment
Network alignment is a fundamental problem for cross-network
mining and many pieces of literature have been proposed to handle
this problem. Most previous works make full use of the attribute
information of nodes, e.g., username, gender, etc. The username is
the most commonly used feature in almost all these works. Perito et
al. [26] employ binary classifiers to determine if the cross-platform
user with the same name is the same person. Vosecky et al. [34] ex-
tracts distance-based profile features and build classifiers to match
users in multiple networks, and similar works can also be found
in [18, 25]. In some scenarios, we can get some special contents
information of the nodes. Therefore, there also exist some meth-
ods to take account of these useful contents for more precision
node matching. Riederer et al. [28] links users by considering their
trajectory-based content features. Almishari et al. [22] aligns users
by exploiting their writing style.

The connection relationship between the nodes is another com-
mon and vital feature. Thus many works have been proposed to
consider both the content information and the network structure.
COSNET [44] uses an energy-based model to link users by consid-
ering both local and global consistency. HYDRA [16] presents a
multi-objective framework to model heterogeneous behaviors and
structure consistency simultaneously.

However, as the attribute information of the nodes is usually
missing, unreliable or even unavailable in real-life applications,
some methods have been proposed to align nodes only based on
the structural information. BigAlign [13] proposes to align two
bipartite graphs with a fast alignment algorithm. UMA [41] jointly
optimizes multiple anonymized social networks in unsupervised
schemes, under the constraints of transitivity law and one-to-one
property. IONE [15] learns the follower-ship/followee-ship of each
user under the framework of network embeddings and utilizes the
embedding vectors to match unknown anchor users.

People nowadays usually participate in multiple diversities of
networks simultaneously, and jointly learning from these related
networks can get much more useful complementary information
for alignment. UMA [41] and REGAL [10] have been proposed to
optimize multiple networks together only considering structural in-
formation. However, the assumption of topology consistency makes
them fail to deal with networks with distinct structures. Consid-
ering the problems above, we propose CrossMNA, a light-weight
cross-network embedding based network alignment method, to
jointly learn structural information across diversities of networks.

5.2 Network Embedding
Network embedding has been emerged as an effective and efficient
approach for learning low-dimension distributed representations
for the nodes in networks and is researched intensively. Previous

works can be roughly divided into two categories: single-network
embedding and multi-network embedding.

Most of the previous works focus on the single-layer network.
Inspired by the distributed representation learning of words in NLP
[20], DeepWalk [27] performs random walk over networks to gen-
erate vertex sequences and conducts Skip-Gram to obtain node
embeddings. On top of DeepWalk, Node2vec [8] modifies the ran-
dom walk strategy into a biased random walk to explore network
structure more efficiently. Unlike the random walk based methods
above, LINE [31] optimizes two objective functions to separately ap-
proximate first-order and second-order proximity in the large-scale
networks. Another general approach for obtaining node embed-
dings is matrix factorization. GreRap [5] proposed a matrix fac-
torization based methods to encode k-step representations, where
each step reflects different local information. TADW [36] incorpo-
rates text contents into network embedding under the framework
of matrix factorization. Although these methods have achieved
satisfactory performance on many single-layer network mining
tasks, they ignore the multiple networks scenario.

To make the data mining task on the multiple networks more
actionable, recently several works have been proposed to transform
the multiple networks into low-dimension vector space. PMNE [17]
proposes two simple merge-based methods which only consider
inter-layer edges or intra-layer edges, and one cross-layer method
which performs a biased random-walk across each layer, to obtain
one overall embedding for each node. MTNE [35] and SMNE [38]
builds a bridge among different layers by sharing a common em-
bedding across each layer of the multiple networks. MELL [19]
proposes the method of simultaneously learning node embeddings
and layer embeddings using all of the network structures.

However, most of these multi-network embedding models ig-
nore the problem of space overhead, which makes them hard to
be applied in large-scale multi-network applications. Unlike these
methods, our CrossMNA occupies much less physical without sac-
rificing the performance, owing to the shared inter-vectors and the
flexible combination strategy.

6 CONCLUSION
We have studied the problem of multi-network alignment and pro-
pose CrossMNA, a light-weight cross-network embedding based
network alignment method for tackling today’s large-scale multi-
network applications. CrossMNA novelly defines two categories of
embedding vectors for each node, i.e. inter-vector and intra-vector.
The commonness of anchor nodes in different networks is repre-
sented by the inter-vector, while the specific structural feature is
interpreted by the intra-vector. In addition, the coordination of inter-
vector and intra-vector dramatically decline the space overhead
while reserving the adequate performance. Extensive experiments
showed analytically our CrossMNA can significantly outperform
other currently existing baselines and multi-network embedding
methods.
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