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ABSTRACT
Computing trajectory similarities is a critical and fundamental task
for various spatial-temporal applications, such as clustering, pre-
diction, and anomaly detection. Traditional similarity metrics, i.e.
DTW and Hausdorff, suffer from quadratic computation complexity,
leading to their inability on large-scale data. To solve this problem,
many trajectory representation learning techniques are proposed to
approximate the metric space while reducing the complexity of sim-
ilarity computation. Nevertheless, these works are designed based
on RNN backend, resulting in a serious performance decline on long
trajectories. In this paper, we propose a novel graph-based method,
namely TrajGAT, to explicitly model the hierarchical spatial struc-
ture and improve the performance of long trajectory similarity
computation. TrajGAT consists of two main modules, i.e., graph
construction and trajectory encoding. For graph construction, Traj-
GAT first employs PR quadtree to build the hierarchical structure
of the whole spatial area, and then constructs a graph for each
trajectory based on the original records and the leaf nodes of the
quadtree. For trajectory encoding, we replace the self-attention in
Transformer with graph attention and design an encoder to rep-
resent the generated graph trajectory. With these two modules,
TrajGAT can capture the long-term dependencies of trajectories
while reducing the GPU memory usage of Transformer. Our ex-
periments on two real-life datasets show that TrajGAT not only
improves the performance on long trajectories but also outperforms
the state-of-the-art methods on mixture trajectories significantly.
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1 INTRODUCTION
Trajectory similarity computation is an essential task in spatial-
temporal data analysis. Classic similaritymeasures, such as DTW[33],
Hausdorff[2] and ERP[6], have been presented to quantify the in-
trinsic similarities of trajectories, which can be applied in trajectory
clustering[31], location prediction[17, 29], anomaly detection[15,
18, 40], etc.The quadratic complexity of thesemeasures, on the other
hand, restricts their application to large-scale trajectory analysis
and is the de facto bottleneck for computing trajectory similarities.

To tackle this issue, various strategies for approximate similarity
measures have been proposed, including locality sensitive hashing
(LSH) for Hausdorff [8] and constraining the wrapping window for
DTW [20]. Unfortunately, these techniques are designed for one
specific measure and not applicable to other measures. Deep rep-
resentation learning(DRL) methods[12, 14, 16, 25, 30, 35, 36] have
been successfully applied for trajectory similarity computation in
recent years. To approximate the similarity, they represent trajec-
tories with vectors and learn a metric space of vectors. Comparing
with traditional approximation strategies, DRL methods are fast
yet general for a variety of similarity metrics. Nevertheless, we
evaluate existing DRL methods on top-K similarity search and find
their performances dramatically decrease on long trajectories. As
shown in Figure 1 (a), the top 10 hitting-ratios of the state-of-the-art
methods, i.e. NeuTraj and Traj2SimVec, suffer from at least a 40%
drop on long trajectories. Similar results can also be observed on
other distance metrics. Solving this problem is vital for DRL-based
similarity computation.

Current DRL methods are incapable of modeling the long-term
dependencies, which leads to the performance drop on long tra-
jectory. On the one hand, according to the definitions of similarity
measures, the similarity of two trajectories is usually dominated by
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Figure 1: The motivation of TrajGAT. The reasons of perfor-
mance decline on long trajectories are illustrated in (b).Ta is
the long trajectory and Tb is the short trajectory. The solid
red lines indicate the alignments captured by RNNs.

some record alignments. The alignments between long and short tra-
jectories span across different regions, as illustrated in Figure 1 (b).
Current methods employ recurrent neural networks(RNNs) to en-
code trajectories into embeddings while maintaining the similarity
relationship. These RNN models use backpropagation through time
(BPTT) for optimization, which can only capture the short-term
dependence of the latest observed records and is difficult to scale
to long sequence[37]. As a result, existing models fail to capture
the alignment information of long trajectories. On the other hand,
DRL methods model the spatial information by learning the shared
representations of equal-sized grids[16, 28], resulting in weak con-
nections for records located far apart in sequence modeling. In
addition, the records are unevenly distributed in spatial. Some grid
cells lack sufficient data to train their representations, which further
deteriorates the performance on long trajectory. Therefore, it is
critical and essential to capture the long-term dependency in long
trajectories for computing the similarity.

Nevertheless, modeling the long-term dependency for trajectory
similarity computation is not trivial. Existing works for model-
ing long sequence can be categorized into three groups, i.e. RNN-
based methods[4, 22], memory network-based methods[5, 11], and
Transformer-based methods [7, 26, 39]. But none of them can be
used in our task. For RNN-based methods, auxiliary losses are em-
ployed in optimization, which not onlymake themodel hard to train
but also lead to suboptimal performance on metric approximation.
Memory network-based methods rely on heuristics designs of mem-
ory structure and are usually incapable of capturing the sequential
relationship. By stacking self-attention operations, Transformer has
demonstrated its superiority in capturing long-term dependence.
However, with the increase of sequence length, the GPU memory
demand of Transformer increases quadratically. Although several
algorithms [32, 39] are proposed for improving the efficiency of
self-attention, they cannot utilize the spatial information and thus
cannot be used directly for trajectory similarity computation.

In this paper, we propose a novel method, namely TrajGAT, to
capture the long-term dependency for trajectory similarity compu-
tation. TrajGAT integrates the hierarchical spatial structures into

trajectory encoding, which not only models the cross-region rela-
tionships in long trajectories explicitly but also constrains the GPU
memory demand of self-attention in Transformer. Specifically, Tra-
jGAT first employs PR quadtree[21] to build the hierarchical struc-
ture. Location records in all quadtree leaf grids are balanced, which
ensures the equivalent training of grids representations. Based on
the quadtree, we construct graphs for all trajectories by involving
extra edges between original records and their related grids. Then,
a graph attention(GAT)-based Transformer is designed to encode
trajectory graphs into embedding vectors. Instead of computing
attention of all pair-wise records, GAT-based Transformer only
aggregates information along the edges in trajectory graph to re-
duce GPU memory cost. Finally, the embedding vectors are fed to a
metric learning framework to approximate the similarity metrics.
The main contributions of this paper are summarized as follows:
• We propose a novel method to solve the performance decline
problem on long trajectory similarity computation. To the best
of our knowledge, TrajGAT is the first deep learning method for
GPS trajectory modeling that captures long-term dependence.
• We design GAT-based Transformer which explicitly integrates
the hierarchical spatial structure and converts trajectories into
graphs for trajectory encoding. It can model the cross-region
relationship while reducing the GPU memory usage.
• Extensive experiments on two public trajectory datasets show
that TrajGAT can not only improve the similarity computation
performance on long trajectories, but also outperform the state-
of-the-art methods on mixture trajectories.

2 RELATEDWORK
In this section, we provide an overview of existing studies related
to TrajGAT from three perspectives: (1) trajectory similarity com-
putation; (2) long sequence modeling; and (3) graph transformers.

Trajectory similarity computation. Existing trajectory simi-
larity computation methods can be broadly divided into two cate-
gories, non-learning-based methods and learning-based methods.
Most non-learning-based methods [1, 3, 8, 20] view each trajectory
as a spatial curve and employ computational geometry to simplify
calculation. These techniques mainly rely on hand-crafted heuristic
rules, which may result in poor performance. Furthermore, they are
designed for specific distances, and hence it is hard to adapt these
techniques for other similarity metrics. Recently, with the develop-
ment of AI[27], many learning-based methods [12, 16, 25, 30, 35, 36]
are proposed to embed the spatio-temporal characteristics of tra-
jectories into vectors and compute the similarity. However, these
methods rely on RNN for sequence modeling and utilize BPTT to
optimize the parameters. Although these methods perform well on
short trajectory datasets, they suffer from performance erosion on
long trajectory datasets.

Long sequencemodeling.Tomodel the long-term dependence,
existing works can be categorized into three groups, i.e. RNN-based
methods, memory network-based methods, and Transformer-based
methods. By adding an unsupervised loss, Trinh et al. [22] improved
the ability of RNNs to capture long-term dependencies. Francois
et al. [4] proposed a principled estimation procedure of long-term
dependencies and designed an EvolutiveRNNs for long sequence
modeling. These RNN-based methods also involved external ob-
jectives for optimization which would make the model hard to
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Figure 2: Architecture of TrajGAT.

train and lead to suboptimal performance. Memory network-based
methods [5, 11] model the long-term dependencies by sharing the
memory tensor. However, the structure of memory tensor is based
on hand-crafted designs and cannot be extended. Recently, many
Transformer-based approaches [26, 39] have been proposed for
long sequence modeling. But the GPU memory cost of these models
are quadratically expanded with the increase of sequence length,
which limits their use. Moreover, all existing long-sequence mod-
eling models are unable to capture spatial information, which is
critical for trajectory similarity computation.

Graph transformers. Many studies [13, 34, 38] have explored
combining graph neural network and Transformer to capture struc-
ture information of sequences. Nevertheless, all of these methods
need the modeling of a graph, which is not easy to obtained in tra-
jectory data. There are works that construct graphs for sequential
data, e.g. sentences [32]. Unfortunately, these methods are unable
to model trajectory due to the particularities of spatio-temporal
characteristics.

3 PRELIMINARY
3.1 Problem Definition
We consider a trajectory database T containing N trajectories and
a trajectory similarity measure f (·, ·). Each trajectory T ∈ T is
a set of locations recording the trace of a moving object. With-
out losing generality, we consider two-dimensional trajectories.
Each trajectory T = [X1, ...,Xt , ...] is a sequence of tuples where
Xt (latt , lont ) is the t − th location of the object. For any two trajec-
tories Ti ,Tj ∈ T , f (Ti ,Tj ) measures the similarity between Ti and
Tj . Here, f (·, ·) could be the DTW, Hausdorff, Fréchet distances, or
any other trajectory similarity measure.

Our task is to compute the similarity for an ad-hoc pair of tra-
jectories from T under the similarity function f (·, ·). However,
for most prevailing similarity measures, computing the similar-
ity between a pair of trajectories incurs quadratic time complex-
ity. Existing DRL-based methods [16, 30, 35] suffer from a seri-
ous performance drop on long trajectories. Hence, the research
question is: how can we learn an approximate similarity function
д(·, ·), such that computing д(Ti ,Tj ) is efficient while the differ-
ences | f (Ti ,Tj ) − д(Ti ,Tj ) | on both long and short trajectories are
minimized.

3.2 Overview of TrajGAT
As shown in Figure 2, TrajGAT is a graph-based metric learning
framework. It consists of three key modules: hierarchical structure
modeling, graph-based trajectory encoding, and metric learning-
based optimization. Assuming that trajectories in T are distributed
in an area A, TrajGAT computes trajectory similarities as follows:
• We first employ Point-Region(PR) quadtree to construct a hierar-
chical partition ofA, denoted asH . The grid cells inH captures
the hierarchical spatial information. To integrate such informa-
tion in the trajectory encoder, we first conduct a pre-training
onH to learn the embeddings of grid cells which preserve the
hierarchical information.
• In graph-based trajectory encoding, TrajGAT utilizes the tree
structure of H to convert each trajectory T into a graph Tд .
The leaf nodes ofTд are the original records, while the non-leaf
nodes are the relative grid cells that form a substructure ofH .
To encode Tд and reduce the GPU memory usage, we proposed
a graph-based Transformer layer that models the sequential
relationship as well as the hierarchical structure to generate the
trajectory embeddings.
• For optimization, we utilize the ranking loss to fit the similarities
of trajectory pairs and propose a normalization approach to
make the supervised information easier to learn.

4 METHODOLOGY
In this section, we will introduce the details of TrajGAT. It consists
of three key modules, hierarchical structure modeling, graph-based
trajectory encoding, and the metric learning-based optimization.
And we will define the structure of each module respectively.

4.1 Hierarchical Structure Modeling
As shown in Figure 2, we first utilize the trajectories in T to build
a quadtreeH which represents the hierarchical spatial structure.
Then, the embeddings of grid cells inH are pre-trained. The fol-
lowing is a description of the two procedures:

4.1.1 Hierarchical Structure Construction. TrajGAT employs PR
quadtree[21] to model the hierarchical spatial information. As
shown in Figure 3, it recursively decomposes the region into four
equal quadrants, sub-quadrants, and so on. For T in an areaA, we
build the hierarchical structure with PR quadtree as follows:
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Figure 3: PR quadtree for hierarchical structure modeling.

1. We first extract the location records from all trajectories and
construct a location set with equal geo-coordinates for duplicate
locations.

2. With an empirical threshold δ , we recursively decompose the
region and yield subregions as children nodes until no leaf node
has more than δ locations.

3. Finally, we omit the location list of leaf nodes and only employ
the hierarchical partitions ofA as the hierarchical structure. We
denote it asH .

As illustrated, Figure 3 provides a toy hierarchical construction
process with δ = 2. The whole area is decomposed into 3 layers
and 13 grids cell with no overlap.

AlthoughH changes as A increases, we argue that the appro-
priate structure for similarity computation trends to be stable. It
indicates thatH can be constructed with partial data and is general-
ized for other new trajectories. We will prove this by an experiment
in Appendix A.3. Thus, the following modules of TrajGAT are de-
signed based onH .

4.1.2 Learning Cell Embeddings ofH . To integrate the hierarchical
information for trajectory encoding, we conduct pre-training onH
to obtain the embeddings of grid cells MH . Assuming there exist
K grid cells inH , we treatH as a graph and conduct Node2Vec on
it. Specifically, we sample a set of paths fromH . The embedding
vectors of grid cells are learned by maximizing the likelihood of
preserving network neighborhoods while exploring diverse neigh-
borhoods. With the sampled cross-layer paths, the learned embed-
ding matrix MH ∈ dh × Nh captures the hierarchical information
ofH , where dh is the dimension of grid cell embedding. After that,
we utilize MH to enhance the trajectory encoding.

4.2 Graph-based Trajectory Encoding
For trajectory encoding, we first construct a graph for each trajec-
tory in T , and then propose a GAT-based Transformer to generate
the embedding of trajectory graph.

4.2.1 Trajectory Graph Construction. Given a trajectoryT , we con-
struct a graphTд = (N,E) by considering the grid cells inH , where
N is the node set and E is the edge set. As shown in Figure 4,Tд not
only contains the original records but also the hierarchical infor-
mation ofH . We specify the construction of graph structure and
node features respectively.

Graph Structure Construction. In this part, we sequentially
introduce the construction process of nodes and edges. Nodes inTд
are extracted from the original records ofT and its related grid cells
inH from different layers, i.e. N = Nr ∪Nh . Specifically, assuming
that the length of T is L, we first build nodes for all records, i.e.,
Nr = {n1, ...nL , }. Each node ni contains all the information of the
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Figure 4: The structure construction of trajectory graph.

original records. Taking Nr as the layer-0 nodes, we recursively
involve the hierarchical grid cells which related to the previous
layer nodes if they are not be added. As shown in Figure 4, for
constructing layer-1 nodes, TrajGAT groups the layer-0 nodes by
its coordinates with respect to the leaf grid cells ofH . Similarly, for
layer-2 nodes, TrajGAT groups the layer-1 nodes according to the
first non-leaf nodes inH . For all the nodes extracted fromH , we
denote them as Nh = {N1

h , ...,N
η
h }, where η is the extracted layers

and Ni
h represents the subset nodes of each layer. Note that η is a

key hyperparameter, and we study the effects of it in Appendix A.3
due to the space limit.

After constructing the nodes in Tд , we build the edges E. We
design two kinds of edges in Tд . The first is cross-layer edges Ec ,
which connects nodes from different layers. As the leaf grid cells of
H is a partition of A, we find the related cells of all records and
add edges from Nr to N1

h . Accordingly, other cross layers edges are
extracted from the tree structure of H . The second type of edge
is the inner-layer edge. To improve GPU memory efficiency and
reduce the computation cost of TrajGAT, we only construct the
inner-layer edges in Nh . For each layer Ni

h , we add fully-connected
edges between the nodes if they are not connected in the lower
layers. It’s worth noting that all the edges in E are undirected,
allowing the messages to bidirectionally pass through the nodes.
The process of constructing a graph is illustrated in Figure 4.

Node Feature Construction.We consider the trajectory graph
Tд = (N,E) as the homogeneous graph, and treat nodes in both
Nr and Nh equally. The node features in N consist of three aspects:
coordinate features f l , region features fr , and hierarchical structure
features fh . Next, we will describe their construction procedure,
respectively.

Each node in N represents a spatial element in area A, which
is either a location or a rectangle region. For nodes in Nr , we
directly utilize the location of their related records as the related
location. For nodes in Nh , we choose their center locations as the
related locations. Note that all locations in the trajectory are GPS
coordinates, we first normalize them with a min-max normalization
function and employ the Multi-layer Perceptron(MLP) to conduct
non-linear transformation. Assuming Xi = (lati, loni) is the related
location of node ni ∈ N, the location feature is constructed as
follows:

xi, yi = Normalize(lati, loni)

f li = MLP(xi, yi)

Moreover, we employ region features to model the region size.
If ni is the node in Nh , we extract the widthwi and height hi of its
related grid cell, and conduct a non-linear transformation to obtain
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the region feature. If ni in Nr , the default valuewi = 0;hi = 0 are
set as its region features. The operation is formulated as follows:

fri = MLP(wi ,hi )

For the hierarchical features, we directly utilize the pre-trained
embeddings matrix ofH . For nodes in Nr , we add one special key
in MH which represents the hierarchical feature of all original
records. In this way, spatial-nearby records in different trajectories
are connected by sharing the same hierarchical features.

fhi = Embedding(MH ,ni)

In summary, for a specific node ni ∈ N, we concatenate the three
parts of features together and obtain the node features:

fi = concat(f li , f
r
i , f

h
i ) (1)

Without loss generality, we assume the dimensions of f li , f
r
i , and

fhi equal to df . The dimension of node feature fi is d = 3 × df .

4.2.2 GAT-based Trajectory Encoder. In this section, we introduce
the GAT-based trajectory encoder which is the core part for encod-
ing the trajectories. It follows the main idea of Transformer while
taking a graph as the input and solving the high GPU memory
cost problem. As illustrated in Figure 5, the key insight is that not
every record needs to be attended to all other ones for similarity
computation. By cooperating with the constructed trajectory graph,
GAT-based Transformer enables the records attending to different
grid cells spanning away from them. Compared with vanilla Trans-
former, our model has two novel designs:(1) Position Encoding for
preserving both sequential and position information of trajectory,
and (2) GAT-based Transformer which models long trajectories by
utilizing the graph-attention operation. We specify the two designs
below.

Position Encoding. Before feeding the trajectory graph into
encoder, we first introduce the position encoding, which includes
both sequential information of records and graph relationship of
nodes.

Tomodel the sequential information, we design a pseudo-level or-
der traversal onTд . We first utilize an empty list L to store the node
sequence and add nodes of Tд from level-0 to level-η, respectively.
For the nodes in level-0 (Nr ), we employ the original sequence of
T and add the related nodes to L sequentially. For nodes in level-i
where η ≥ i > 0, we add them to L without repeat according to the
appearing order of their connected nodes in Nh

i−1. The construction
of L is shown in Figure 4.

With the sequential nodes in L, we employ the sinusoidal val-
ues proposed by Vaswani et al. [23] for encoding the position in-
formation. This approach is an absolute position encoding called
sinusoidal position embeddings. Assume L containsM nodes, we
construct the sequential position embeddings as follows:

λi j = {
sin(10000

j
i ), if i is even

cos (10000
j−1
i i ), if i is odd

where i = [1, ...,M] and j = [1, ...,d/2]. For the sequential position
encoding of node ni ∈ N, we denote it as λsi ∈ R

d/2.
To model the graph relationship in Tд , we employ Laplacian

position encoding[9] to encode relative distance information, i.e.

Graph Attention Layer

N x

Input 
Embedding

Input Trajectory Graph

λPositional 
Encoding

GAT

Add ѿ�1RUP

Feed Forward

Add ѿ�1RUP

Trajectory Embedding

h1

h3

h4
h6

h5

h2

h7

h8

Figure 5: The architecture GAT-based Transformer

nearby nodes have similar positional features and farther nodes
have dissimilar positional features.

∆ = I − D−1/2AD−1/2 = UTΛU

λ
д
i = MLP(topp (U)))

where A is the adjacency matrix, D is the degree matrix, and Λ,U
correspond to the eigenvalues and eigenvectors, respectively. Be-
sides, λi denotes the Laplacian positional encoding for node i , and
topp indicates the operation that slicing the p smallest non-trivial of
Λ, and it related eigenvectors at the position of node ni . By feeding
the eigenvectors to a fully connected layer, we obtain the graph
position encoding, denote as λдi ∈ R

d/2.
After the generation of λsi and λ

д
i , we concatenate them to obtain

the final position encoding vector λi and add it with the node
features. The result is taken as the input of the next GAT-based
Transformer Layer.

λi = concat(λsi , λ
g
i , )

ii = λi + fi
(2)

where ii ∈ Rd is the input vector of node ni .
GAT-based Transformer Layer. Due to the self-attention op-

eration, vanilla Transformer needs to compute all the pair-wise
attention weights and suffers from the high GPU memory usage
problem. For long trajectories, this problem could be even worse.
We have conducted a toy experiment on trajectories whose max
length is 1000. On Nvidia 3090 GPU with 24G memory, the max
batch size of vanilla Transformer equals 1, which is extremely ineffi-
cient. In contrast, we observe most similarity measures are defined
on the partial alignments of record pairs, such as Hausdorff, Fréchet,
and w-DTW. Computing all pair-wise attention is neither efficient
nor necessary in trajectory similarity computation. Thus, taking
the ii as the input h0i , we replace the self-attention layer with the
graph-attention layer to yield the trajectory embeddings. For one
specific node ni , the operations in GAT-based Transformer layer
are defined as follows:

h′ℓ+1i = Oℓ
h concatHk=1

*.
,

∑
j ∈Ni

wk, ℓ
i j Vk, ℓhℓj

+/
-
,

where, wk, ℓ
i, j = softmaxj

*.
,

Qk, ℓhℓi · K
k, ℓhℓj√

dk

+/
-
,

(3)
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where Ni is the neighborhoods of node ni , Qk, ℓ ,Kk, ℓ ,Vk, ℓ ∈

Rdk×d ,Oℓ
h ∈ R

d×d ,k = 1 to H indicates the number of attention
heads. For numerical stability, the outputs after taking exponents of
the terms inside so f tmax are limited to the range of (−5, 5). Then
the attention output h′ℓ+1i are fed into a Feed Forward Network
(FFN) which contains the residual connections and batch normal-
ization modules. For concise, we omit the equations of identical
operations with Transformer.

After the P layers of GAT-based Transformer, we obtain the hid-
den representations of all nodes i.e. [hP1 , ..., h

P
i , ..., h

P
M ]. To generate

the final embedding of trajectory graph Tд , we employ the mean
readout function on node embedding. The embedding e of trajec-
toryT is computed as e =

∑M
i=1 hPi /M . The outputs of Graph-based

Trajectory Encoding are trajectory embeddings which can be used
to measure the trajectory similarities.

4.3 Metric Learning for Optimization
Based on the embeddings of trajectory graphs, TrajGAT employs
deep metric learning framework to optimize the model parameters.
Given the distance matrix D containing the pair-wise distances
of trajectory pairs in T , we follow the method introduced in [28]
and first transform D to a similarity matrix S and use the S as
the supervised information, i.e., Si j =

exp(−θ Di,h )
max(exp(−θ D)) , where θ

is a tunable parameter controlling the similarity value distribu-
tion. Then, trajectories in T are sequentially taken as the anchor
trajectory for model optimization.

Previousmethods [28, 35] directly employed the similarity values
in S as the ground truth. However, most of the similarities of Ta
trend to aggregate in a small region, which cannot provide clear
supervised information. We conduct Gaussian normalization on
the similarity list of Ta before computing the loss:

µa =

∑
i ∈[1, ...,N ]/a Sai

N − 1
;σa =

√∑
i ∈[1, ...,N ]/a (Sai − µa )2

N − 1
f (Ta ,Tj ) = (Saj − µa )/σa

After the normalization, the similarity distribution of Ta conforms
to a standard Gaussian distribution. TrajGAT can capture the su-
pervised information more easily.

Assume that n trajectories are sampled for Ta to fit the similari-
ties, we compute the loss of Ta as follows:

La =
n∑
i=1

ri (д(Ta ,Ti ) − f (Ta ,Ti ))
2 (4)

where д(Ti ,Tj ) = exp (−Euclidean(ei , ej )) computes the similarity
between two trajectory embeddings; r is the sample weight calcu-
lated by the weighted rank loss [28]. Finally, the overall loss of T
is the sum of all anchor trajectory losses, i.e., LT =

∑
a∈T La . All

of the parameters in TrajGAT can be updated in an end-to-end way.
We update the parameters with back-propagation algorithm and
employ Adam optimizer for optimization.

4.4 Complexity Analysis of TrajGAT.
The computation of TrajGAT includes two parts, i.e., the hierarchical
structure construction and the trajectory encoding. The first part is
the preprocessing procedure and does not influence the efficiency

of similarity computation. The complexity of the second part is
O (η ·L+L · loд(L)), which is higher than that of RNN-based models.
However, the encoding time of TrajGAT is comparable with these
methods in practice, because TrajGAT is more efficient on GPU. All
of the operations in TrajGAT can be computed in parallel while the
RNN-based models cannot. More details of complexity analysis can
be found in the Appendix A.1.

5 EXPERIMENTS
In this section, we evaluate the performance of TrajGAT and answer
the following questions:
• Q1: What is the performance of TrajGAT comparing with exist-
ing trajectory similarity computation methods?
• Q2:How efficient does TrajGAT perform on GPUmemory usage
to generate the trajectory embeddings?
• Q3:What are the capabilities of the proposed hierarchical struc-
ture modeling and graph-based trajectory encoding?

5.1 Experimental Settings
We briefly introduce the experimental settings below. The detailed
experimental settings can be found in the Appendix A.2.

5.1.1 Data Descriptions. We employ two public trajectory datasets
to evaluate the performance of TrajGAT. The first dataset is taxi
trajectories in Xian provided by DiDi Inc. After the data prepossess-
ing method proposed in [28], we obtain 5.25 million trajectories
for the Xian dataset and over 0.6 million trajectories for the Porto
dataset. For each dataset, we construct two sub-datasets, denoted as
Mix and Long, to verify the performance of TrajGAT on different
trajectory lengths. In our experiments, bothMix and Long of the
two datasets contain 10, 000 trajectories.

5.1.2 Experimental Protocol. To evaluate the performance of Traj-
GAT, we conduct experiments on two tasks, i.e., Top-K trajectory
similarity search (Section 5.2) and trajectory clustering (Section
5.3), and compare the performance of TrajGAT with many learning-
based similarity computation methods. To measure the efficiency of
TrajGAT, we compare the GPU memory cost and report the results
in Section 5.4. The results of ablation studies are detailed in Section
5.5. Moreover, we also test the sensitivity of key parameters in the
Appendix A.3.

5.1.3 Compared Baselines. We compare TrajGAT with six repre-
sentative works, including NT-No-SAM [28], traj2vec [30], t2vec
[16],NeuTraj [28],Traj2SimVec [35] andTransformer [23]. The
details of these methods are specified in the Appendix A.2.3.

5.1.4 Parameter Settings. TrajGAT employs 3-layers stack of GAT-
based Transformer. The graph attention operation in each layer
has 8 attention heads. We set the embedding dimension as 32 (i.e.,
dmodel = 32). In addition, we set the sampling size n as 20.

5.2 Performance of Top-K Trajectory
Similarity Search

To answer question Q1, we compare the performance of TrajGAT
with the baselines on both Xian and Porto datasets, and show the
experimental results in Table 1. From the results onMix datasets,
we observe: (1) TrajGAT significantly outperforms the baselines in
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Table 1: Performance comparison on mixture trajectory dataset.

DTW onMix Hausdorff on Mix DTW on Long Hausdorff on LongDataset Method HR@10 HR@50 R10@50 HR@10 HR@50 R10@50 HR@10 HR@50 R10@50 HR@10 HR@50 R10@50
NT-No-SAM 0.4490 0.5272 0.8322 0.4476 0.6179 0.8695 0.0578 0.1170 0.2157 0.1082 0.1661 0.2604
traj2vec 0.1845 0.2197 0.3939 0.1416 0.1841 0.2691 0.0425 0.0822 0.1903 0.0415 0.0813 0.2080
t2vec 0.2511 0.3059 0.4909 0.2497 0.2910 0.4620 0.0479 0.0714 0.1870 0.0699 0.1011 0.1992
NeuTraj 0.4635 0.5519 0.8494 0.4537 0.6409 0.8823 0.0585 0.1213 0.2188 0.1096 0.1723 0.2642
Traj2SimVec 0.2628 0.3045 0.5702 0.3448 0.3414 0.5593 0.1476 0.1577 0.2812 0.1490 0.1990 0.2445
Transformer 0.3259 0.4556 0.7725 0.7096 0.7993 0.9791 0.3044 0.4319 0.7439 0.4696 0.5602 0.8205

Xian

TrajGAT 0.4659 0.5442 0.9159 0.7476 0.8290 0.9849 0.3896 0.4702 0.8405 0.5405 0.6702 0.7805
NT-No-SAM 0.1476 0.1601 0.3190 0.0893 0.1032 0.1768 0.0193 0.0260 0.1321 0.0223 0.0621 0.1618
traj2vec 0.1456 0.1799 0.3519 0.1031 0.1245 0.2369 0.0251 0.0602 0.1500 0.0291 0.0715 0.1706
t2vec 0.2451 0.2795 0.4590 0.2199 0.2479 0.4229 0.0337 0.0551 0.1037 0.0429 0.0775 0.1361
NeuTraj 0.3281 0.4614 0.7547 0.3499 0.4458 0.7388 0.0994 0.1652 0.2529 0.1020 0.1774 0.2700
Traj2SimVec 0.1768 0.1623 0.3461 0.1664 0.1332 0.3047 0.1976 0.2059 0.3737 0.1803 0.1759 0.3219
Transformer 0.1061 0.1477 0.2548 0.5606 0.6442 0.9183 0.0332 0.0668 0.0867 0.1265 0.2057 0.3547

Porto

TrajGAT 0.4946 0.5344 0.8769 0.6569 0.7181 0.9589 0.3667 0.4205 0.7146 0.5344 0.6350 0.9037

almost all metrics. Taking the Hausdorff distance on Porto dataset
as an example, TrajGAT gains about two times performance im-
provements (from 34.99% to 65.69%) on HR@10 comparing the
strongest baseline NeuTraj. Under the fact that TrajGAT utilizes
the same supervised information, such improvements are impres-
sive. (2) The advantages of TrajGAT are also obvious in both sim-
ilarity measures. It achieves the best performance on both DTW
and Hausdorff, which indicates TrajGAT is general for different tra-
jectory similarity metrics. (3) Although all the compared methods
employ deep neural networks to approximate the similarity func-
tion, TrajGAT has two advantages to obtain the best performance.
First, the hierarchical structure is explicitly modeled, which enables
TrajGAT capturing the location density distribution of the whole
spatial area. Second, instead of using RNN for trajectory encoding,
TrajGAT employs the GAT-based Transformer to model the sequen-
tial information, which can not only model long-term dependencies
but also aggregate the spatial information from different layers.

According to results on Long datasets, we note that: (1) Traj-
GAT achieves total supremacy compared with all baselines. On both
Xian and Porto datasets, the performance of TrajGAT is at least two
times higher than other methods. For example, TrajGAT improves
HR@10 of Hausdorff on Porto dataset from 18.03% to 53.44%. This
result indicates TrajGAT can capture the long-term dependency of
trajectories which is useful for similarity computation. (2) Among
all the compared methods, the performance of Traj2SimVec is
better than others. It is because Traj2SimVec takes sub-trajectory
similarities as the supervised information for model training, which
implicitly captures the hierarchical relationship of long trajecto-
ries spanning across different regions. (3) Comparing the results
of TrajGAT onMix and Long, we find the performance on Long
dataset is inferior to its on Mix dataset. This phenomenon indi-
cates approximating the similarities on long trajectories is more
challenging than it on mixture trajectories.

5.3 Performance of Trajectory Clustering
To verify the effectiveness of TrajGAT in computing pair-wise
similarities and answer Q1 better, we conduct the trajectory clus-
tering experiment on the Porto dataset. The clustering algorithm
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Figure 6: The number of clusters changing with the increase
of ϵ on Porto.

is DBSCAN which has two key parameters, i.e. the minimum sam-
ples m and the maximum distance ϵ within sample pairs of one
cluster. As shown in Figure 6, we compare the number of clusters
between accurate similarities (Ground Truth) and embedding-based
similarities under various of ϵ . Compared with the result of other
learning-based similarity computation methods, the cluster num-
bers differences of TrajGAT are relatively small (illustrated in the
right part of Figure 6 (a)) indicating that the metric space of embed-
dings generated by TrajGAT is more approximate to the accurate
metrics than other baselines. From Figure 6 (b), we observe the
performances of NeuTraj and Traj2SimVec are poor on almost
all cluster results. It proves existing learning-based methods can
hardly approximate the metric space on long trajectories. Over-
all, TrajGAT achieves better performance on Long dataset which
proves the long-term dependency captured by TrajGAT is vital for
computing the similarities of long trajectories.
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Figure 7: The comparison of cluster metrics changing with the increase of ϵ on Mix dataset of Porto.
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Figure 8: The comparison of cluster metrics changing with the increase of ϵ on Long dataset of Porto.
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Figure 9: The results of GPU memory efficiency.

Moreover, we compute four clusteringmetrics for the embedding-
based methods to measure the consistency of trajectories in dif-
ferent cluster results. As illustrated in Figure 7 and 8, TrajGAT
significantly outperforms both NeuTraj and Traj2SimVec under
all clusters. Taking theHomoдeneity onMix dataset as an example,
TrajGAT achieves over 0.8 in most cases while the performances of
compared methods are around 0.5. A similar phenomenon can also
be observed on the other three clustering metrics. This result fur-
ther shows the superiority of TrajGAT in approximating the metric
space. Comparing the results between Figure 7 and 8, we observe
the performance gaps between TrajGAT and other baselines on
Long are higher than those onMix, which is consistent with the
number of clusters. One thing to note is that the clustering met-
rics of baselines are low on Long dataset indicating the compared
methods can hardly learn meaningful embeddings for long trajec-
tories. TrajGAT solves this problem by modeling the long-term
dependency and obtains substantial performance improvements.

5.4 Efficiency Experiments
To answer Q2, we test the efficiency of TrajGAT on GPU memory
usage. We evaluate the GPU memory usage of TrajGAT with the
change of batch size. We compare TrajGAT with Transformer
and NeuTraj by denoting the allocated GPU memory in model
inference. The results are shown in Figure 9. As illustrated, the
GPU memory usage of TrajGAT is much less than the two base-
lines. Comparing TrajGAT with Transformer, we observe that
Transformer encounters the out-of-memory problem at batch

Table 2: Ablation Results
DTWDataset Method HR@10 HR@50 R10@50

Transformer 0.1017 0.1425 0.2621
TrajGAT-graph 0.4091 0.4599 0.7867
TrajGAT-tree 0.4774 0.5207 0.8603
TrajGAT-trans 0.4447 0.4907 0.8347

Mix

TrajGAT 0.4946 0.5344 0.8769
Transformer 0.0346 0.0616 0.0795

TrajGAT-graph 0.2559 0.3151 0.5347
TrajGAT-tree 0.2752 0.3366 0.5811
TrajGAT-trans 0.3252 0.3964 0.6608

Long

TrajGAT 0.3667 0.4205 0.7146

size > 100 while TrajGAT takes only about 20% GPU memory(500
MiB). It proves that TrajGAT significantly decreases the GPU mem-
ory usage by transforming original trajectories to trajectory graphs
and modeling them with graph attention. Comparing TrajGAT with
NeuTraj, we note the memory usage of NeuTraj is always high,
i.e., over 90%.

The reason isNeuTraj employ a spatial memory tensor to model
the spatial correlation, which requires a large amount of memory
to store.
5.5 Ablation Results
To answer Q3, we compare TrajGAT with its three ablations, i.e.
TrajGAT-tree, TrajGAT-graph and TrajGAT-trans. The architec-
tures of these ablations are specified as follows:
• TrajGAT-graph employs the leaf nodes of quadtree as the spatial
partition and utilizes the Transformer to model the grids.
• TrajGAT-tree divides the spatial area with equal-sized grids and
employs GAT-based Transformer to model the 2-layers trajec-
tory graph. We employ 50m × 50m as the grid size.
• TrajGAT-trans constructs trajectory graphs and employs graph
attention networks[24] to generate the trajectory embeddings.

The experiment is conducted on the Porto dataset and the results
are shown in Table 3. We observe: (1) By integrating the hierarchi-
cal spatial structure explicitly, the performance increase of top-k
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similarity search is remarkable (i.e., from Transformer 10.17% to
TrajGAT-graph 40.91% on Long under DTW), which proves the
effectiveness of the long-term dependency modeling. (2) Compar-
ing the results of TrajGAT-tree with Transformer, we observe
the graph construction procedure can extract useful information
and model the long term dependencies in trajectory, which are
useful for the similarity computation on bothMix and Long. For
example, the HR@10 of Hausdorff onMix improves from 25.28% to
60.95%. (3) From the results of TrajGAT-trans and TrajGAT, we can
conclude that the GAT-based Transformer is more effective than
graph attention networks for trajectory similarity computation. (4)
TrajGAT achieves the best performance compared to all ablations,
which proves the effectiveness of the proposed techniques.

6 CONCLUSION
In this paper, we are the first to observe the performance gap be-
tween long and short trajectories for current DRL-based methods.
We attribute this problem to the lack of modeling long-term depen-
dency. To solve the problem, a graph-based method, TrajGAT, is
proposed. It explicitly models the hierarchical structure of spatial
area built by PR-quadtree and constructs the trajectory graph based
on the grid cells of quadtree. Besides, a GAT-based Transformer
is designed to capture both spatial and sequential information of
trajectories while reducing the GPU memory demand. Extensive
experiments on two public datasets show that TrajGAT achieves
significant performance improvements on long trajectories and
outperforms all comparing baselines.
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A APPENDIX
A.1 Complexity Analysis of TrajGAT
The computation of TrajGAT includes two parts, i.e., the hierarchical
structure construction and the trajectory encoding. We analyze the
complexity of them respectively.

TrajGAT employs PR quadtree to recursively construct the hi-
erarchical structure of the A. Thus, the complexity of construct-
ing H is proportional to the depth of quadtree which is usually
loд(Nall ), where Nall is the number of location records in T . The
time complexity of hierarchical construction isO (Nall · loд(Nall )).
The construction can be treated as the preparing procedure. When
preparing the new trajectories, the hierarchical structure is shared.
Therefore, the efficiency of similarity computation is not affected
by this additional step.

For the trajectory encoding, we first convert each trajectory
into a trajectory graph Tд based on the preconstructed H . As
introduced in Section 4.2.1, η layers hierarchical information are
involved to construct the trajectory graph. The time complexity of
this procedure isO (η ·L), where L is the length of trajectory. Taking
Tд as the input, TrajGAT employs GAT-based Transformer to yield
the trajectory representations. For each GAT-based Transformer
layer, the computation cost is L · NE where NE is the number of
edges in Tд and usually proportional to loд(L). Hence, the overall
complexity of trajectory encoding is O (η · L + L · loд(L)).

A.2 Experimental Settings
A.2.1 Data Descriptions. We employ two public trajectory datasets
to evaluate the performance of TrajGAT. The first dataset is taxi
trajectories in Xian [? ], which contains 17,621 trajectories of human
mobility from 2007 to 2010. The second dataset Porto[19] contains
over 1.7 millions of taxi trajectories from 2013 to 2014. We follow
the data prepossessing procedure of [28] which selects trajectories
in the center area of the city and removes trajectories which are less
than 10 records. After the processing, we obtain 7641 trajectories
for the Xian dataset and over 600, 000 trajectories for the Porto
dataset.

To verify the performance of TrajGAT on different trajectory
lengths, we construct two sub-datasets for each dataset, denoted
asMix and Long. Trajectories having more than 200 records are
referred to as long trajectories and assigned to Long. Under this
setting, we obtain 30, 031 long trajectories for the Porto dataset
and 85 long trajectories for the Xian dataset. Due to the high com-
putation cost of computing pair-wise distances, it is intractable to
compute all pair-wise distances for the two dataset. We randomly
sample a subset of trajectories from the original dataset for perfor-
mance evaluation. In our experiments, both Mix and Long of the
two datasets contain 10, 000 trajectories. The pair-wise distance
matrixes are precomputed to supervise the model training.

A.2.2 Experimental Protocol. To evaluate the performance of Traj-
GAT, we employ two tasks, Top-K trajectory similarity search and
trajectory clustering, and compare the performance of TrajGAT
with many learning-based similarity computation methods. Besides,
we also compare the GPU memory cost to verify the efficiency of
TrajGAT. The the experimental protocol are described in detail
below.

Top-K Trajectory Similarity Search.We study the Top-k sim-
ilarity search problem on both Xian and Porto datasets and evaluate
TrajGAT under two distance measures, i.e., Dynamic TimeWarping
(DTW) and Hausdorff distance. The Hausdorff distance is a met-
ric, which means it is symmetric and meets the triangle inequality.
Therefore, we learn the models to approximate the metrics directly.
DTW is not a metric. We add the distance matrix with its transfor-
mation matrix to make it symmetric, and explore the performance
of TrajGAT on non-metric similarity measure.

The ground truth of this problem is the exact top-k results based
on precomputed accurate similarity, i.e. the Hausdorff distance and
the DTW distance. To verify the ability of models on trajectories
of different length ranges, we evaluate the performances of Traj-
GAT and all compared methods on both Mix and Long datasets.
Furthermore, we randomly choose 20% trajectories as the training
set, 10% trajectories as the validation set, and 70% trajectories as
the test set.

For performance evaluation in the top-k similarity search exper-
iment, we employ three different metrics: HR@10, HR@50, and
R10@50. The HR@k represents the top-k hitting ratio, refers to the
overlap percentage between produced top-k results and the ground
truth. The R10@50 indicates the top-50 recall for the top-10 ground
truth, which evaluates how many of the top-10 ground-truth trajec-
tories are recovered by top 50 lists produced using differentmethods.
The performance comparison of top-k trajectory similarity search
is shown in Section 5.2.

Trajectory Clustering. To evaluate the performance of Traj-
GAT on computing pair-wise similarities, we conduct trajectory
clustering experiments on Porto datasets and compare the differ-
ence of clusters between accurate similarities and embedding-based
similarities. As for the clustering algorithm, we utilize DBSCAN[10],
which is a widely used density-based clustering algorithm on spa-
tial data, to obtain clustering results in various parameter settings.
Specifically, we fix the minimum number of trajectories for a cluster
and increase the ϵ to generate different clusters on both accurate
similarities and learned embeddings. The clustering results are
evaluated under five clustering metrics: the number of clusters,
Homogeneity, Completeness, V-measure, and Adjusted Random
Index. The result of trajectory clustering is shown in Section 5.3.

Efficiency. As shown in Section 4.4, the computation of trajec-
tory similarities is constant after generating the trajectory embed-
dings. Thus, the inference cost for trajectory embeddings can be
used to describe the efficiency of TrajGAT. In our experiments,
we compare the GPU memory usage of TrajGAT to that of ex-
isting learning-based similarity computing methods to verify the
efficiency. The experimental results are analyzed in Section 5.4

A.2.3 Compared baselines. We compare TrajGAT with six repre-
sentative works, including NT-No-SAM[28], traj2vec [30], t2vec
[16], NeuTraj [28], Traj2SimVec [35], and Transformer [23].
The main ideas of these methods are listed as follows:

• NT-No-SAM [28] uses a recurrent neural network to capture
the sequential relationship, and regards the output hidden state
as the embedding of trajectories.
• traj2vec[30] represents the trajectory features via the moving
behavior of trajectories and reconstruction loss. This method
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points for constructing PR-quadtree δ .

1 2 3

Layers

0.35

0.40

0.45

0.50

T
op

10
H

it
ti

ng
R

ad
io

Mix

Long

Figure 11: The performance changes with the layers η.

is designed for trajectory clustering. And it can also adapt to
similarity computation without huge modifications.
• t2vec[16] is a seq2seq-based model, and adopts novel embed-
ding techniques to deal with sampling rate variations and noisy
sample points.
• NeuTraj[28] is a metric learning approach, which combines a
spatial attention memory module and a distance-weighted rank-
ing loss, and employs seed-guided neural network to compute
trajectory similarity.
• Traj2SimVec[35] designs a strategy to extract distance informa-
tion from sub-trajectories and limits the matching relationship
between trajectory points based on different distance metrics.
• Transformer[23] is proposed for neural language processing,
but it can also be adapted to model sequential data. Inspired by
this work, we design our trajectory encoding method.

For methods having public code[16, 28, 30], we directly use their
implementations. For other methods, we follow the settings of the
relevant publications and implement them by ourselves.

A.2.4 Parameter Settings. For all datasets, we apply min-max nor-
malization before feeding the input features. For the architecture
of TrajGAT, we employ 3-layer stack of GAT-based Transformer
in trajectory encoder. The graph attention operation in each layer
has 8 attention heads. We set the embedding dimension as 32 (i.e.,
dmodel = 32). In addition, we set the sampling size n as 10. The
whole model is optimized by Adam optimizer with learning rate
α = 1 × 10−3. There also exists some hyperparameters in TrajGAT,
i.e. δ and η. We study the influence of them in Appendix A.3.

Table 3: Ablation Results

HausdorffDataset Method HR@10 HR@50 R10@50
Transformer 0.2528 0.3295 0.4981

TrajGAT-graph 0.3594 0.4297 0.7125
TrajGAT-tree 0.6095 0.6901 0.9431
TrajGAT-trans 0.6268 0.7002 0.9486

Mix

TrajGAT 0.6569 0.7181 0.9589
Transformer 0.1301 0.2194 0.3600

TrajGAT-graph 0.1788 0.2912 0.4309
TrajGAT-tree 0.5471 0.6539 0.9122
TrajGAT-trans 0.4620 0.5744 0.8328

Long

TrajGAT 0.5344 0.6350 0.9037

A.3 Parameter Sensitivity Analysis
In this experiment, we study the sensitivity of hyperparameters
and answer Q4. Two key model-specified parameters i.e., δ and η,
are analyzed. We compared the top-k trajectory similarity search
performance on different parameter settings and try to give the
strategy to select them. All the experiments in this section are
conducted on a Nvidia 3090 RTX.

Maximumpoints for constructing PR-quadtree δ .With the
same area A, we build the PR-quadtree with different trajectories
and evaluate the influence of δ on Long and Mix trajectories of
Porto. The Long has 2, 100, 219 records and theMix has 502, 556
points. The performances of different H are compared with the
increase of δ . As illustrated in Figure 10, the performance of Tra-
jGAT in Long first increase and then decrease and the depth of
the conducted quadtree decreases with the increase of δ . TrajGAT
achieves the best performance on δ = 50 and the relative depth of
quadtree is about 21. For Mix, TrajGAT performs best on δ = 10
and depth is also 21. We do not evaluate it on more small δ cause
the dataset contains duplicated locations whose max number is 9.
Thus, both Long and Mix achieve the best performance on similar
hierarchical structures, suggesting that there exist a properH for
A. We calculate the minimum grid cells of leaf nodes when the
depth is 21. The scale of leaf grid cells is about 50m×50m indicating
this scale is appropriate to capture hierarchical spatial information
of Porto. For new trajectory datasets, we can first determine the
minimum grid cells in quadtree and tune the δ to satisfy the scale.

Layers to generate the trajectory graph η. As illustrated in
11, the performance of TrajGAT increases with η and trends to be
stable. On Mix dataset, TrajGAT achieves the best performance
at η = 1. This result is conformed with our observation that the
long-range connections are not significant inMix dataset. On the
contrary, involving more layers of hierarchical structure benefits
the performance on Long dataset, which indicates that hierarchical
spatial information is useful for improving long trajectory similar-
ity computation. With the increase of η, the nodes of trajectory
graph are expanded multiply, which would involves more compu-
tation to generate the trajectory embedding. Thus, we prefer to
choose minimum η to achieve stable performance on new trajectory
datasets.
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