
Information Sciences 571 (2021) 527–542
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/ locate/ ins
Semi-supervised anomaly detection in dynamic communication
networks
https://doi.org/10.1016/j.ins.2021.04.056
0020-0255/� 2021 Published by Elsevier Inc.

⇑ Corresponding author.
E-mail address: nrcyujun@ict.ac.cn (Y. Zhang).
Xuying Meng a,b, Suhang Wang c, Zhimin Liang a, Di Yao a, Jihua Zhou d, Yujun Zhang a,⇑
a Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
b Purple Mountain Laboratories, Nanjing, China
cCollege of Information Sciences and Technology, Pennsylvania State University, State College, PA, USA
d Jin Mei Communication, Chogqing, China

a r t i c l e i n f o
Article history:
Received 6 May 2020
Received in revised form 8 February 2021
Accepted 12 April 2021
Available online 20 April 2021

Keywords:
Anomaly detection
Semi-supervised learning
Generative adversarial networks
Self-learning
a b s t r a c t

To ensure the security and stabilization of the communication networks, anomaly detec-
tion is the first line of defense. However, their learning process suffers two major issues:
(1) inadequate labels: there are many different kinds of attacks but rare abnormal nodes
in mt of these atstacks; and (2) inaccurate labels: considering the heavy network flows
and new emerging attacks, providing accurate labels for all nodes is very expensive. The
inadequate and inaccurate label problem challenges many existing methods because the
majority normal nodes result in a biased classifier while the noisy labels will further
degrade the performance of the classifier. To tackle these issues, we propose SemiADC, a
Semi-supervised Anomaly Detection framework for dynamic Communication networks.
SemiADC first approximately learns the feature distribution of normal nodes with regular-
ization from abnormal ones. It then cleans the datasets and extracts the nodes sasainaccu-
rate labels by the learned feature distribution and structure-based temporal correlations.
These self-learning processes run iteratively with mutual promotion, and finally help
increase the accuracy of anomaly detection. Experimental evaluations on real-world data-
sets demonstrate the effectiveness of our SemiADC, which performs substantially better
than the state-of-art anomaly detection approaches without the demand of adequate and
accurate supervision.

� 2021 Published by Elsevier Inc.
1. Introduction

Communication networks are the foundation of all Internet-based applications. However, abnormal nodes keep launching
different kinds of attacks for personal profits, leading to great losses to other nodes (e.g., crashes of server nodes). Aiming at
detecting nodes that launch attacks, accurate and timely abnormal nodes detection is crucial for securing Internet-based
applications in dynamic communication networks . It has attracted increasing attention and many efforts have been taken
[1–5]. For example, Ban et al. [1] detect abnormal nodes by dense-block detection based on the assumption that abnormal
entities share resources, e.g., IP (Internet Protocol) addresses, and the shared information will lead to dense blocks on ten-
sors. Bars et al. [2] demonstrate that the involvement of abnormal nodes will lead to abnormal communication volume.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2021.04.056&domain=pdf
https://doi.org/10.1016/j.ins.2021.04.056
mailto:nrcyujun@ict.ac.cn
https://doi.org/10.1016/j.ins.2021.04.056
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

X. Meng, S. Wang, Z. Liang et al. Information Sciences 571 (2021) 527–542
Despite the initial success, most existing semi-supervised or supervised anomaly detection algorithms for communication
networks assume that abundant accurate labeled data are available for training.

In real-world anomaly detection for communication networks, we are often faced with issues of inadequate and inaccurate
labels. A toy example is shown in Fig. 1, where borders of the labeled normal and labeled abnormal nodes are colored gray
and red respectively. First, as shown in the figure, the majority of nodes are labeled normal while only a small portion of
nodes are labeled abnormal. In addition, among these abnormal nodes, there are many types of attacks (we differentiate
them with different colors in Fig. 1) and each type of attack only has few labeled data, which makes the labeled abnormal
nodes inadequate. Second, considering the vast network flows and the limited background knowledge of various new attacks
(i.e., zero-day attacks), it is almost impossible to ensure that all labels are completely accurate. Many abnormal nodes, espe-
cially those launch new attacks whose behaviors are unknown, can be inaccurately labeled as normal nodes in the training
data (e.g., n3 is inaccurately labeled normal for lacking latest background knowledge). Though several efforts have been made
to tackle inadequacy problem [3,6,7], few of them notice the inaccuracy issue. Such inadequate and inaccurate labels chal-
lenge many existing methods because the majority normal nodes will dominate the loss function of the classifier to be
learned, which could result in a biased classifier, and the inaccurate labels further degrade the performance of the classi-
fier.Thus, anomaly detection algorithm that can effectively learn from inadequate and inaccurate labels is in great demand.

In this paper, we study the novel problem of anomaly detection in dynamic networks with inadequate and inaccurate
labeled data. We tackle challenges of inadequacy and inaccuracy based on observations from two perspectives, i.e., the fea-
ture perspective and the structure perspective. First, from the feature perspective, it is demonstrated that features of abnor-
mal nodes are very different from the normal ones, and have high probability of being similar to the labeled abnormal [7].
Thus, if we can estimate the normal and abnormal feature distribution (i.e., feature distribution of normal and abnormal
nodes), we can judge if a node is normal or abnormal by checking which distribution it fits. However, due to the inadequacy
of labeled abnormal, the abnormal feature distribution cannot be well estimated. Moreover, nodes with unknown new
attacks may not be similar to the existing labeled anomalies. Therefore, instead of estimating both normal and abnormal fea-
ture distribution, we only estimate the normal feature distribution for the abundant data of normal nodes. Also, as the abnor-
mal nodes are those who have launched attacks, based on the matched signatures of previously known attacks or the losses
of their attacks, it is much easier to ensure abnormal labels accurate [8]. Thus, although the labeled abnormal are inadequate,
these accurate abnormal nodes can help alleviate the inaccuracy problem and regularize the estimation of normal feature
distribution. Utilizing features of both abnormal and normal nodes, a good estimation of the normal feature distribution
paves us a way to detect abnormal nodes.

From the perspectives of structures (or interactions, flows), the temporal correlations of different flows can imply the
potential abnormality. For example, in Fig. 2, a recent event ‘‘WannaCry” contains two kinds of attacks [9], i.e., port scan
attack and infiltration attack, where the infiltration can infect the victim to be abnormal if the victim’s port 445 is open.
In this event, there are two kinds of temporal correlations between these attacks, i.e., multi-step correlations between the
same node pair (e.g., the infiltration attack between n1 and n2 comes after the port scan attack on the same node pair),
and multi-hop correlations between different node pairs (e.g., port scan between n3 and n4 happens after n3 gets infiltrated
by n1). If n1 is labeled abnormal for its port scan behaviors in t1, it has a higher chance to be detected as abnormal in t2 by
multi-step correlations. Also, the multi-hop correlations between ðn1;n3Þ and ðn3;n4Þ can help ensure the abnormality of n3

in t3. These temporal correlations can greatly help better detect the abnormal nodes.
Based on the analysis from both feature and structure perspectives, we aim to build robust anomaly detection in dynamic

communication networks from inadequate and inaccurate labels by simultaneously exploring time-series feature similari-
ties and structure-based temporal correlations. The main challenges are (i) how to effectively estimate the normal feature
distribution given inadequate and inaccurate labels; and (ii) how to simultaneously exploit the time-series features and tem-
poral correlations for anomaly detection. In an attempt to solve these two challenges, we propose a novel framework Semi-
ADC, which leverages GAN (Generative Adversarial Networks) to estimate the normal feature distribution with the
regularization from the labeled abnormal nodes. We simultaneously leverage the trained GAN and temporal correlations
to detect abnormal nodes in a self-training manner with the iterative feature modeling and data cleaning. The main contri-
butions are:

� We propose SemiADC, a novel semi-supervised anomaly detection framework for dynamic communication networks,
detecting abnormal nodes without the demand of adequate and accurate supervision;

� We introduce a GAN-based model to approximately learn normal feature distribution with regularization from abnormal
nodes;

� Inspired by self-training, we novelly improve the learning process of feature distribution with iteratively cleaned datasets
based on the time-series features and temporal correlations; and

� We demonstrate the substantial improvement of our SemiADC compared to state-of-art anomaly detection approaches.

The rest of this paper is organized as follows. In Section 2, we outline the related work and formally define the problem in
Section 3. We describe the technical details of SemiADC in Section 4. In Section 5, we experimentally demonstrate the effec-
tiveness of our framework on real-world datasets, and conclude in Section 6.
528

Fig. 1. Toy example of inadequate and inaccurate labels.

X. Meng, S. Wang, Z. Liang et al. Information Sciences 571 (2021) 527–542
2. Related work

In this section, we review related work, including anomaly detection in communication networks and semi-supervised
anomaly detection.

2.1. Anomaly detection in communication networks

Communication networks have become an integral part of daily life and business, however, abnormal nodes keep mount-
ing different kinds of attacks, leading to great losses to the nodes in the networks. To detect abnormal nodes that launch
attacks in communication networks, recent years have witnessed increasing attention on anomaly detection [10–17].

Some existing works treat this task as a general static classification problem [10,11] without considering the dynamic
characteristics of communication networks. For example, Mukkamala et al. [10] train SVMs to differentiate anomalies from
normal ones based on several discovered abnormal patterns of DoS attacks. Zhou et al. [11] utilize DNN to train a classifier to
detect internet intrusion attacks. Several works try to capture these characteristics, but most of these works are from the
perspective of edges or graphs [13–17]. For example, Huang et al. [13] design a data structure to detect abnormal edges based
on the characteristics of traffic anomalies, such as heavy hitters and heavy changers. Nevat et al. [14] utilize the Markov
chain to detect abnormal flows (i.e., edges) based on the state transitions of TCP (Transmission Control Protocol) flows.
Yu et al. [15] utilize wavelet transform and DNN to detect false data injection attacks in the system (i.e., graph) based on
the state deviation of their spatial and temporal data correlations. Eswaran et al. detect abnormal edges [16] and graphs
[17] based on the observation that abnormal flows or graphs tend to happen as a burst of activities. However, these obser-
vations are targeted for particular attack categories like DoS or particular protocols like TCP; while for general attacks in
communication networks, it leads to limited improvement in anomaly detection. In addition, most of these works assume
that there are abundant accurate labeled data; while in the real world, considering the rare abnormal nodes and great
amounts of normal nodes, it is expensive to provide adequate labels for abnormal nodes and requires up-to-date domain
knowledge to accurately label the normal nodes. Thus, we are facing inadequate and inaccurate label problems.

To meet actual needs, we tackle the anomaly detection problem from the nodes’ side with observations of time-series fea-
tures and structure-based temporal correlations.

2.2. Semi-supervised anomaly detection

Semi-supervised learning is a branch of machine learning, which utilizes both labeled and unlabeled data to improve the
model’s accuracy. There are different kinds of semi-supervised methods, e.g., self-training, transductive-learning-based, co-
Fig. 2. Simplified process of ‘‘WannaCry”, where the red nodes are labeled abnormal, the red links denote port scan attack, the black dashed links denote
infiltration attack, and the black links are normal flows.

529

X. Meng, S. Wang, Z. Liang et al. Information Sciences 571 (2021) 527–542
training, graph-based and generative-network-based schemes [18]. In this work, we focus on self-training and generative-
network-based schemes for anomaly detection.

For self-training schemes, a.k.a self-learning, they iteratively retrain the detector with both updated labeled data and the
most confident predictions [19], and there are several works utilizing self-training for anomaly detection [20,21]. For exam-
ple, Ashfaq et al. [20] propose a self-training semi-supervised anomaly detection framework that evaluates fuzziness scores
of unlabeled flows, updates flow labels by the scores, and retrains the classifier for abnormality with the updated datasets.
However, these works assume the existing labels are fully accurate, and can not be easily adapted to our settings.

For the generative-network-based schemes, the recent most popular and efficient one is the GAN-based model, which can
learn feature distribution and generate high-quality features that even can not be distinguished from the realistic ones [22–
24]. For example, Akcay et al. [22] propose an encoder-decoder-encoder pipeline and evaluate the abnormality of each node
based on the normal features. Li et al. [23] utilize RNN and GAN to learn time-series features of normal nodes for abnormality
estimation. Zenati et al. [24] propose a BiGAN-based framework utilizing normal data to detect anomalies. These works are
based on the assumption that all anomalies have different features to normal nodes, thus they only utilize the adequate
labeled normal nodes and waste the existing labeled abnormal ones. Moreover, they believe all the normal labels are fully
correct, while abnormal nodes can be inaccurately labeled as normal for the large number of normal nodes and for lacking
knowledge of new attacks, which will directly harm the performance of anomaly detection.

Different from these existing works, we take advantage of both self-training and generative-network-based semi-
supervised learning, learning normal feature distribution by generative networks with regularization from abnormal nodes,
and utilizing self-learning to update the mislabeled nodes and retrain the generative-network-based detector.
3. Problem statement and notations

As abnormal nodes behave normally in most of the time, we construct node representations and labels in small sliding
time windows to capture the temporal periodicity and guarantee the timeliness of detection at the same time.

Traditionally, attacks are filtered by signatures of abnormal interactions (i.e., directed links from the attackers ni to the
victims nj) [8]. We keep the filtered abnormal interactions as ðni;nj; tÞ and include them into the set S. Let Yt

ni
¼ 1 if node

ni is labeled abnormal for launching attacks in the t-th time window. Other nodes without matched signatures of known
attacks are left unlabeled, and Yt

nj
¼ 0 if nj is one of unlabeled nodes in the t-th time window. With the definition of Y

and its corresponding cases, we can define the label condition. Considering their labels and corresponding time windows,
we have two kinds of label conditions, i.e., the labeled abnormal N l ¼ fðni; tÞjYt

ni
¼ 1g and approximate normal

N u ¼ fðni; tÞjYt
ni
¼ 0g, and we further divide N u into three groups: (1) The majority of nodes in N u are normal nodes and

we use N u nrm to denote them. (2) Some abnormal nodes, which are mistakenly ignored during labeling due to the large
number of flows although their attacks are previously known. We useN u knw to denote the set of abnormal nodes with known
attacks. (3) Some abnormal nodes, which are mislabeled due to lacking the latest knowledge of unknown zero-day attacks.
We useN u unk to denote the set of abnormal nodes with unknown attacks. In summary, we have four kinds of label conditions
for anomaly detection, i.e., N l;N u nrm;N u knw and N u unk.

All node interactions in the t-th time window construct the link set At , each ðni;nj; tkÞ represent a link from ni to nj in the
k-th time slot of the t-th new time window. Additionally, we use Xt

ni
2 Rm�w to denote feature matrix of node ni in the t-th

time window, where m is the feature dimension and w is the number of time slots in each time window. The labeled abnor-
mal feature matrix (i.e., the feature matrix of labeled abnormal nodes) and approximate normal feature matrix (i.e., the fea-
ture matrix of unlabeled nodes) are denoted as Xl and Xu based on their label conditions. With the aforementioned notations
and definitions, we can now formally define the problem of semi-supervised anomaly detection for dynamic communication
networks as follows:

Given X;Y;S and At , we seek to learn a robust model to clean the training set (i.e., detect and move the unlabeled abnormal
nodes of N u knw and N u unk from N u to N l), and detect abnormal nodes in the t-th new time window.
4. Proposed framework

We propose Semi-supervised Anomaly Detection in dynamic Communication networks (SemiADC), to detect abnormal
nodes with inadequate and inaccurate labels. To meet this goal, we first approximately model normal features with these
labels (in Section 4.1). After that, we utilize the learned normal feature model (in Section 4.2.1) and corresponding temporal
correlations (in Section 4.2.2) among selected flows (in Section 4.3) to iteratively clean the inaccurate labels and finally
improve the anomaly detection performance in a self-learning way (in Section 4.4).

The overall structure of SemiADC is shown in Fig. 3. It consists of five major components: a generator G to generate syn-
thetic normal features GðZÞ from random noise Z, an encoder E to encode Xu into EðXuÞ and Xl into EðXlÞ, a discriminator D to
differentiate the synthetic tuple ðGðZuÞ;ZuÞ and the realistic tuple ðXu; EðXuÞÞ, a classifier C to guide the generated tuple to be
different from ðXl; EðXlÞÞ, and a perceiver P to perceive the abnormalities based on the learned neural networks (G; E;D and C)
and the graph }̂ with both labeled and potential abnormal nodes.
530

Fig. 3. An illustration of SemiADC with five components. The arrows show the input and output of each component. On the left, labeled, unlabeled and
synthetic features (Xl;Xu and GðZÞ) are colored red, green and gray, respectively. On the right, labeled abnormal nodes and potential abnormal nodes are
colored red and pink, and abnormal links in S and potential abnormal links in Ŝ are represented as red lines and pink dashed lines separately.

X. Meng, S. Wang, Z. Liang et al. Information Sciences 571 (2021) 527–542
Next, we will show how to design G; E;D and C for time-series feature modeling, and how to utilize P to clean Y and
improve the learning results of G; E;D and C.

4.1. Learning the normal feature distribution

In order to clean the datasets and detect the abnormal nodes, we first model normal feature distribution utilizing both the
approximate normal set N u and the labeled abnormal N l based on three observations. (1) Considering various and inade-
quate abnormal nodes, the adequate normal features can provide relatively unbiased guidance for anomaly detection based
on facts that most abnormal features cannot well fit normal feature distribution [24,23,25]. (2) Real normal nodes in N u nrm

take the majority of the unlabeled set N u, thus the unlabeled data can be utilized to approximately learn the normal feature
distribution and we also demonstrate it in Section 5. (3) Although the number of labeled abnormal is small, it is much easier
to ensure the accuracy of labeled abnormal nodes and their features can provide help to regularize and bound the learning
results of normal feature distribution.

Recently, GAN-based models have been proven to be very useful in estimating the data distribution and can generate
‘‘real” samples from a random ‘‘noise” [26]. Though GAN can approximate the normal data distribution and generate realistic
data samples, it is difficult to find the proper Z to evaluate if a given feature matrix Xt

nt fits the normal node distribution;
while our ultimate goal of learning data distribution is to judge if a given sample is abnormal or not by estimating how well
it fits the learned distribution. Thus, instead of using GAN, we adopt BiGAN [27], i.e., Bidirectional GAN. BiGAN introduces an
encoder E, which eases the calculation of reconstruction error for a given input Xt

nt (i.e., we do not need to take time to find

the proper Z for the Xt
nt). A data sample that fits the learned normal feature distribution should have a small reconstruction

error while an anomaly should have a large reconstruction error. Thus, BiGAN is good for our goal. Its objective function
VðG; E;DÞ is
min
G;E

max
D

EXu�pNu
½logDðXu; EðXuÞÞ� þ EZ�pz ½logð1� DðGðZÞ;ZÞ� ð1Þ
where pN u
is the feature distribution of the approximate normal nodes N u, and pz is the distribution of random noise such as

from Gaussian distribution. In Eq. (1), G; E are trained to minimize the objective function and make generated tuple
ðGðZuÞ;ZuÞ close to realistic tuple ðXu; EðXuÞÞ, whereas, the discriminator D is trained to maximize the objective function
and distinguish between ðGðZuÞ;ZuÞ and ðXu; EðXuÞÞ. Through this mini-max game, D can finally help G’s generation to be
close to the realistic data Xu. With BiGAN, we can calculate the reconstruction error of an input Xt

ni
as kXt

ni
� GðEðXt

ni
ÞÞkF ,

which can be used for estimating the abnormality.
For better anomaly detection performance, we further introduce a classifier C to ensure that the generated normal fea-

tures from G are different from the existing labeled abnormal ones. Specifically, the objective VðG; E;CÞ can be formalized as
max
G;E;C

EXl�pN l
½logCðXl; EðXlÞÞ� þ EZ�pz ½logð1� CðGðZÞ;ZÞÞ� þ EXu�pNu

½logð1� CðXu; EðXuÞÞÞ�; ð2Þ
where Xl is a realistic abnormal feature matrix and it can be regarded as a sample from the feature distribution of the labeled
abnormal nodes N l. The optimization of Eq. (2) is: (1) for abnormal features Xl � pN l

, the classifier C should classify it as
abnormal, i.e., CðXl; EðXlÞ ¼ 1; while for normal data GðZÞ or Xu � pN u

;C should classify it as normal, i.e., CðGðZÞ;ZÞ ¼ 0 or
CðXu; EðXuÞÞ ¼ 0; and (2) the generator G should try to generate GðZÞ that will be classified as normal. With the guidance
of C and N l, we can further ensure that the generator fits the distribution of realistic normal nodes and far away from exist-
ing labeled abnormal nodes, which would be useful to estimate the abnormality in Section 4.2.1.

Combining the Eqs. (1) and (2), we arrive at
531

X. Meng, S. Wang, Z. Liang et al. Information Sciences 571 (2021) 527–542
VðG; E;C;DÞ ¼ min
G;E;C

max
D

ðaVðG; E;DÞ � bVðG; E; CÞÞ; ð3Þ
where a and b control the relative contributions. The loss functions for G; E;D and C are given as
LG ¼ aEZu�pz ½logð1� DðGðZÞ;ZÞÞ� � bEZ�pz ½logð1� CðGðZÞ;ZÞÞ� ð4Þ

LE ¼ aEXu�pNu
½logDðXu; EðXuÞÞ� � bEXl�pN l

½logCðXl; EðXlÞÞ�
�bEXu�pNu

½logð1� CðXu; EðXuÞÞÞ�
ð5Þ

LD ¼ �aEXu�pNu
½logDðXu; EðXuÞÞ� � aEZ�pz ½logð1� DðGðZÞ;ZÞ� ð6Þ

LC ¼ �bEXl�pN l
½logCðXl; EðXlÞÞ� � bEZ�pz ½logð1� CðGðZÞ;ZÞÞ�

�bEXu�pNu
½logð1� CðXu; EðXuÞÞÞ�:

ð7Þ
Considering node features evolve with time, we adopt Long Short-TermMemory (LSTM) [28] as the basic network for BiGAN,
especially for C to capture the feature periodicity.

4.2. Exploring potential abnormal nodes

To clean the datasets and provide a more accurate model, the unlabeled abnormal nodes N u knw and N u unk should be
detected from the approximate normal set N u and moved into the labeled abnormal N l.

4.2.1. Feature-based abnormality evaluation
We first utilize the learned feature distribution to analyze the unlabeled data from N u. In order to filter out N u knw and

N u unk, we need to calculate the abnormality value AnoStni for each ðni; tÞ in N u, where nodes in unlabeled abnormal sets
N u knw and N u unk should receive higher value than unlabeled normal set N u nrm. As discussed in Section 4.1, we will use
learned feature model to evaluate the abnormality AnoStni by
AnoStni ¼ ckXt
ni
� GðEðXt

ni
ÞÞkF þ dDðXt

ni
; EðXt

ni
ÞÞ

þð1� c� dÞCðXt
ni
; EðXt

ni
ÞÞ;

ð8Þ
where the first term kXt
ni
� GðEðXt

ni
ÞÞkF calculates reconstruction error compared to the generated normal features with the

Frobenius norm, the term DðXt
ni
; EðXt

ni
ÞÞ denotes the discriminator’s confidence of Xt

ni
sampled from reality, and CðXt

ni
; EðXt

ni
ÞÞ

implies the feature similarities compared to the existing labeled abnormal nodes. c and d are scalars to control the relative
contributions.

The proposed AnoS can meet the needs of different label conditions. If a node is largely different to the normal features
(i.e., high kXt

ni
� GðEðXt

ni
ÞÞkF), has a high possibility to be from real world (i.e., high DðXt

ni
; EðXt

ni
ÞÞ), and is similar to the labeled

abnormal features (i.e., high CðXt
ni
; EðXt

ni
ÞÞ), it has a big chance to be an abnormal nodes and will receive a relatively high

AnoS. To be specific, we have three cases for different label conditions:

� Case (1): From the perspective of time-series features, abnormal features are different from those from unlabeled normal
N u nrm[22–24] and similar to those from labeled abnormal N l [10,20]. Obviously, N l can achieve higher AnoS than N u nrm.

� Case (2): For N u knw, as they are inaccurately trained as normal nodes, they will receive a similar value on the first two
terms of AnoS. However, referred to those correctly labeled N l, they can get a high CðXt

ni
; EðXt

ni
ÞÞ value based on the same

previously known attacks. Thus, AnoS for N u knw will be higher than N u nrm.
� Case (3): There are similarities between different attacks, for example, the large hitters and heavy changers characteristics
[13]. For N u unk, those unknown attacks also show feature similarities with the previously known ones [8,12]. Thus, the
feature similarities will help provide relatively high CðXt

ni
; EðXt

ni
ÞÞ forN u unk, and AnoS forN u unk will be higher thanN u nrm.

To further validate the correctness of the three case, we conduct t-test using two datasets we introduce in Section 5.1.1. In
detail, we construct vectors al; au knw; au unk and au nrm to denote the AnoStni of all label conditions ðni; tÞ in N l;N u knw;N u unk

and N u nrm separately. For t-test on two vectors fal; au nrmg of case (1), the null hypothesis is H0 : al 6 au nrm while the alter-
native hypothesis is H1 : al > au nrm, where the null hypothesis indicates that nodes with label conditions in N l are likely to
obtain smaller AnoS values than that in N u nrm; therefore if we reject the null hypothesis, the case (1) is verified. Based on the
datasets DARPA1998 and CICIDS2017 of Section 5.1.1, the null hypothesis is rejected at the significant level a ¼ 0:01 with p-
value of 5:02e�122 and 9:99e�200, respectively. For case (2) on the two datasets, the null hypothesis H0 : au knw 6 au nrm is
rejected at the significant level a ¼ 0:01 with p-values of 1:39e�50 and 9:99e�200 when 10% abnormal nodes are inaccurately
labeled in the two datasets for case (2). For case (3), as there are different attack types with different influences on the normal
532

X. Meng, S. Wang, Z. Liang et al. Information Sciences 571 (2021) 527–542
feature distribution results, we train the normal feature distribution model for each attack types. The null hypothesis
H0 : au unk 6 au nrm is rejected at the significant level a ¼ 0:01 among all the 14 attack types in the dataset CICIDS2017. How-
ever, H0 can not be rejected with a ¼ 0:01 among all the 35 attack types in the DARPA1998. In summary, we verified the
correctness of case (1) and (2), but for case (3), without knowledge of the unknown attacks, the AnoS of unlabeled abnormal
N u unk can be close to N u nrm, and there still exist some mistakes just depending on the feature similarities.

To further enhance the abnormality evaluation results with structure information in Section 4.2.2, we construct a rela-
tively big potential abnormal node set N u with a loose criteria for label cleaning. In detail, we put those ðni; tÞ in the history

datasets into N u if AnoStni exceeds a threshold u. The u ¼ lþ gr can be defined by the Cantelli’s Inequality [29,30], where l
and r are the expected value and variance of the unlabeled nodes’ AnoS scores, and g controls the false positive upper bound.
Also, in the new time window, all nodes are unlabeled, and they can be regarded as nodes in N u. To detect anomalies in the
dynamic communication networks, based on the AnoS scores of nodes in the t-th new time window, we construct the poten-
tial abnormal node set N u;t , which only includes links in the t-th time window.

4.2.2. Structure-enhanced abnormality evaluation
To further refine the detection results, we exploit the temporal correlations of links between nodes. Since the processes of

utilizing temporal correlations for label cleaning and anomaly detection are similar, we use label cleaning with the N u as an
example. As links are changing frequently and there are more than one links in one time window, great amounts of redun-
dant links will waste time and may influence the exploitation, we only utilize a few potential abnormal links to help enhance
abnormality evaluation. For each ðni; tÞ 2 N u, we select potential abnormal links in the t-th time windowwith source node ni

by the selection mechanism (to be introduced in Section 4.3), include them into potential abnormal link set Ŝ, and construct
the graph }̂ by Ŝ and S, where the link from ni to nj in tk is denoted as ltkni ;nj . In the constructed }̂, we consider two popular

temporal correlations between links (as shown in Fig. 4), i.e., multiple steps and multiple hops [31–33]. We only explain the
correlations between two links here for simplification although they can actually happen among more links. For multi-hop
attacks in Fig. 4(a), to increase the success rate of attacking n5, attacker n7 launches several attacks with multiple hops to
control n6;n3 and n4, and make them simultaneously launch attacks on n5. For multi-step attacks in Fig. 4(b), attacker n1

may first launch several attacks to test the vulnerability of the victim n4 before the disastrous attack happens. Obviously,
if one of the two links is in the labeled nodes’ link set S, it would help the other link and the corresponding abnormal node
being recognized. For example, the labeled abnormal ðn2; t6Þ will help detect ðn6; t7Þ by the multi-hop correlation between
lt6n2 ;n6 and lt7n6 ;n5 . Similarly, the labeled abnormal ðn1; t1Þ will help detect ðn1; t3Þ by the multi-step correlation between lt1n1 ;n4
and lt3n1 ;n4 . Note that it is necessary to identify the same abnormal nodes in different time window, such as ðn1; t1Þ and
ðn1; t3Þ in Fig. 4(b), which is because although what we want is to find the abnormal nodes, yet in the training sets we would
like to identify each Yt

ni
to prepare for testing nodes in new time windows.

As the temporal correlation is among links of at least two abnormal nodes, it helps recognize the real anomalies
N u knw and N u unk from the potential abnormal node set N u. In detail, we have three cases for different temporal
correlations:

� Case (1): for ðn6; t7Þ 2 N u in Fig. 4(a), there is a path from the labeled abnormal n2 to the potential abnormal n6;
� Case (2) for ðn7; t5Þ 2 N u, there are three reversed paths from the labeled n2;n3 and n4 to the potential abnormal n7;

� Case (3) for ðn1; t3Þ 2 N u in Fig. 4(b), we can regard it as a path to itself based on the correlation between lt1n1 ;n4 and lt3n1 ;n4 .

In summary, the temporal correlations provide an undirected path starting from the labeled abnormal nodes to the unla-
beled abnormal nodes.

The undirected paths with temporal correlations can be treated as a diffusion process among abnormal nodes, where
abnormality is transferred from one node to the other linked one [34]. After adding all links of S into }̂, we conduct random
walks for each potential abnormal ðnj; tÞ 2 N u. The probability of walking from the labeled abnormal ni to the potential
abnormal nj is based on the relative abnormality, which can be formulated as
Trij ¼
AnoStnjX

ðnk ;tgÞ2R
AnoStgnk

: ð9Þ
Here, R contains the potential abnormal nodes ðnk; tgÞ which has an undirected path from nk to the labeled ni like the above
three cases, and ðnj; tÞ 2 R. Since the diffusion process can help recognize the real anomalies N u knw and N u unk from the
potential abnormal node set N u, we update AnoS to AnoST as
AnoSTt
nj
¼ AnoStnj þ s

X

ni2N l

NUMij

NUMi
; ð10Þ
533

Fig. 4. Subgraphs of the }̂ showing temporal correlations, where the red links and nodes are from S, and the dashed pink links are from Ŝ. The pink and gray
nodes are from N u , denoting the real abnormal and the mistakenly-included normal nodes separately.

X. Meng, S. Wang, Z. Liang et al. Information Sciences 571 (2021) 527–542
where the second term represents the estimation of temporal correlations between links of the potential abnormal nj 2 N u

and the labeled abnormal ni 2 N l. Considering the diffusion process with the three cases for different temporal correlations,
nodes have higher possibilities to be abnormal if they have higher possibilities to be easily reached from labeled abnormal
nodes. Similar to our scenario with abnormality, this observation for diffusion model is widely used in social recommenda-
tion, where preferences can be transferred from one user to the other linked one (i.e., friend), and users have more possibility
to like one item if they can be easily reached from those who have the same preference [35]. Thus, starting from labeled
abnormal nodes in N l, if we arrive the node nj many times (i.e., nj has many temporal correlations with nodes in N l), nj

has a higher possibility to be abnormal.
In detail, for each node ni in N l, there are m1 times of m2 steps random walk. The number of random walk ism1, the max-

imum step of each random walk is m2, thus each labeled abnormal ni will pass at most m1 �m2 nodes in the random walk
process. Asm2 is the maximum step and there may no enough links of ni, the actual walking steps from ni is NUMi rather than
m1 �m2. Among those NUMi steps, nj has been passed NUMij times. We set Yt

nj
¼ 1 for those who receive top K AnoSTt

nj
, and

add ðnj; tÞ intoN l. With the updated dataset, we can retrain the model in Section 4.1 with a more precise input dataset. As we
have g to control false positive upper bound and limit the number of potential abnormal nodes in N u, we will only return
jN uj nodes and stop the cleaning process if the K < jN uj. After the cleaning process finishes, with the N u;t in the new time

window, we can filter the potential abnormal link set Ŝt fromAt based on the trained attention model (Section 4.3). The tem-
poral correlations between links of Ŝt and S on the graph }̂t will also help enhance the correctness of abnormality evaluation
for anomaly detection.

4.3. Attention for time slots

In each time window, there are more than one time slot, which have different contributions to the abnormal feature mod-
eling since abnormal nodes may not behave abnormally through the whole time window. In addition to the feature model-
ing, the time slots’ different importance also affects structure-based exploration. Temporal correlations only happen among
links of several time slots other than links of the whole time window. These useless links, for example, the links lt3n1 ;n2 and lt3n1 ;n3
in Fig. 4(b), will enlarge the size of R for Eq. (9) and highly increase the computation complexity for the random walk on }̂.

To capture the different importance of time slots in each time window and reduce the computation complexity, we adopt
the attention mechanism [36,37]. Specifically, the hidden state fht;igwi¼1 of the first layer of classifier C is modified with atten-
tion weights at;i and aggregated to form the latent vector ht for each time window,
ut;i ¼ tanhðWsht;i þ bsÞ;
ati ¼

expðuT
t;i
usÞP

i
expðuT

t;i
usÞ

; ht ¼
X

i

at;iht;i;
ð11Þ
where we feed the slot i-th hidden state ht;i through a MLP to get ut;i as a hidden representation of ht;i. Also, the slot impor-
tance at;i is measured as the similarities between ut;i and a slot level context vector us (which is randomly initialized and
jointly learned during the training process like [36]). The slot importance at;i implies each slot’s local relative contribution,
while the final representation ht will help globally estimate nodes’ abnormality for C. In the structure-based random walk,
we can only include links of the time slot with the highest at;i into Ŝ, which will largely reduce the number of involved links
and reduce the computation complexity.
534

X. Meng, S. Wang, Z. Liang et al. Information Sciences 571 (2021) 527–542
Algorithm 1: Label Cleaning

Input: Xl, Xu N l, N u, S

1.
 for number of training iterations do

2.
 while not converge do

3.
 Randomly sample mini-batch from Xu and Xl
4.
 Randomly sample noise Z for latent normal features

5.
 Obtain generated GðZÞ, encoded EðXuÞ and EðXlÞ

6.
 Update discriminator parameters hD by Eq. (6)

7.
 Update classifier parameters hC to minimize Eq. (7) and calculate attention parameters a by Eq. (11)

8.
 Update generator parameters hG to minimize Eq. (4)

9.
 Update encoder parameters hE to minimize Eq. (5)

10.
 Add label condition into Nu by Eq. (8)

11.
 for (nj, t) in Nu do

12.
 Add its links in the highest at;i slot to Ŝ

13.
 Add S, Ŝ into }̂
14.
 for ni in N l do

15.
 Random walk from ni with Eq. (9) in }̂
16.
 Add nodes with top K AnoST into N l by Eq. (10)

17.
 Update N u, Xl and Xu based on updated N l
4.4. Proposed framework – SemiADC

With the introduction of modeling normal features and exploring potential abnormal nodes, we first iteratively train our
model to clean the labels in a semi-supervised way. The details are shown in Algorithm 1. We first train the GAN-based
model from line 2 to line 9 with Xl and Xu. After convergence, we select the potential abnormal nodes N u with the most

contributive links Ŝ from line 10 to line 12. After including abnormal links S and potential abnormal links Ŝ to graph }̂ in
line 13, we calculate the arrived times for each potential abnormal nodes from line 14 to line 15, add the most potential
abnormal nodes into N l in line 16, and retrain the normal feature model from line 2 to 17 with the updated Xl and Xu. After
several training iterations, we can get a more precise normal feature model.
Algorithm 2: The Proposed Framework SemiADC

Input: Xl, Xu N l, N u, S, Ŝt
1.
 Conduct label cleaning by Algorithm 1

2.
 # In the new time window t

3.
 Calculate the AnoS and construct Nu;t by Eq. (8) with trained model

4.
 for (nj, t) in Nu;t do

5.
 Add its links in the highest at;i slot to Ŝt
6.
 Add S, Ŝt into }̂t
7.
 for ni in N l do

8.
 Random walk from ni with Eq. (9) in }̂t
9.
 Detect abnormal nodes with AnoST by Eq. (10)
As a deep learning model, it takes a relatively long time to train the model, but the process of anomaly detection is fast
and timely for the data in new time windows (or in the testing sets). The details are shown in Algorithm 2. To detect abnor-
mal nodes in the t-th new time window, we first calculate a rough abnormality value AnoS for each testing node and con-
structN u;t in line 3. Then we utilize the trained attention model to select the potential abnormal links Ŝt from line 4 to line 5,
refine the abnormality estimation with temporal correlations from line 6 to line 8, and get the abnormal nodes by calculating
the refined abnormality value AnoST in line 9.

Let fully connected neural networks E;G;D and C contain NE;NG;ND;NC layers with dEi ; dGi
; dCi

; dDi
hidden units, and the

first layer of C for X is LSTM with dl hidden units. For N testing samples, the computation cost of AnoS is

OðNðmdE1 þ
PNE

n¼2dEi�1dEi þ dENE
dG1 þ

PNG
n¼2dGi�1dGi

ÞÞ for the first term, OðNððmþ dENE
ÞdD1 þ

PND
n¼2dDi�1dDi

ÞÞ for the second term,

and OðNððmþwþ dC1 þ dENE
Þdl þ

PNC
n¼2dCi�1

dCi
ÞÞ for the third with consideration of the attention mechanism. With the N u

based on AnoS, the cost of calculating attention weight for Ŝ selection is OðjN uj �wÞ. Finally, the cost of transition probabil-
535

X. Meng, S. Wang, Z. Liang et al. Information Sciences 571 (2021) 527–542
ity and random walk is OðjŜj þ jSjm1m2Þ. Note that in our experiments, NE;NG;ND;NC are less than 3, dEi ; dGi
; dCi

; dDi
are less

than 20, and they are fixed. Thus, the time complexity is not large. Specially, we run the experiments on a Ubuntu PC with i7-
7800X CPU, 16GB memory, and one 1080ti GPU, making the experimental details the same as that in Section 5.1 the testing
time for each ðni; tÞ is about 10�5 second.

5. Experimental analysis

In this section, we conduct experiments to demonstrate the effectiveness of our proposed framework SemiADC. Through
the experiments, we aim to answer four questions: (1) Can SemiADC improve the anomaly detection performance under
inaccurate labels from unlabeled abnormal sets N u knw and N u unk? (2) How robust is SemiADC under different percentages
of inaccurate labels? (3) How the self-learning process affects the SemiADC in training data cleaning and anomaly detection?
and (4) How hyper-parameters (e.g., a and s) affect the anomaly detection performance?

Next, we will first introduce the experiment settings followed by experiments to answer these four questions.

5.1. Experimental settings

5.1.1. Datasets
Two publicly available datasets DARPA19981 and CICIDS20172 are used for evaluation, where DARPA1998 is widely used

for anomaly detection in communication networks [1,17,20] and CICIDS2017 is similar to DARPA1998 but with different and
new attack types. DARPA1998 contains 3013862 IP-IP network flows with their corresponding real-world data packages for
seven weeks, including 9008 source IPs, 21022 destination IPs and 35 attack types. Similarly, CICIDS2017 is composed of
2830743 IP-IP network flows with their corresponding real-world data packages for one week, including 17005 source IPs,
19112 destination IPs and 14 attack types.

We adopt some pre-processing steps for these two datasets. Following the guidance3, we first extract 41 features for each
data package, including continuous features (like start time, duration) and discontinuous features (like protocols and services).
For those discontinuous ones, we use one-hot vectors to represent these features [24], which results in 56 features for the
DARPA98 and 98 features for CICIDS2017. For both datasets, each time window contains 10 time slots. Considering the attack
frequency, the time slot size is set to be 10 min for DARPA1998 and 6 s for CICIDS2017. Regarding (IP, time) as the unique iden-
tifier, there are jN lj ¼ 27309 and jN u nrmj ¼ 8297 for DARPA1998; and jN lj ¼ 1006 and jN u nrmj ¼ 189965 for CICIDS2017. As to
the value of each feature in each time slot: if it is a continuous feature, the value is the average of the corresponding feature
values (e.g., average flow duration in a time slot); if it is a one-hot encoding feature, the value is the occurrence time (e.g.,
the frequency of using UDP protocol in a time slot).

Note that, although one of the attacks ‘‘smurf” in DARPA1998 lasts for a long time and construct huge amounts of time
windows, leading to a large N l, yet other attacks except ‘‘smurf” only occupy 2% of the whole datasets, and most of these
attacks appear in less than 10 time windows, thus it is still consistent to our inadequate abnormal label settings.

In the following experiments, we use 60% of both jN lj and jN u nrmj for training, leaving 40% for testing, where we ensure
the interactions of the training dataset happen before the testing dataset. Also, as there are no exact unlabeled abnormal
N u knw and N u unk as ground truth, we will construct N u knw and N u unk in Section 5.2.

5.1.2. Compared methods
To evaluate the effectiveness of SemiADC, we compare SemiADC with representative and state-of-the-art approaches:

� REPEN [30]: this method learns customized REPresentations for a random nEarest Neighbor distance-based approach,
ensuring the representations of outliers can get higher scores with prior knowledge of outliers’ features.

� GANomaly [22]: this method designs an encoder-decoder-encoder pipeline for GAN, and evaluate the abnormality of each
node based on the normal features.

� GAN-AD [23]: this method utilizes RNN and GAN to learn time-series features of normal nodes and get the abnormality
estimation for each node.

� ALAD [24]: the Adversarially Learned Anomaly Detection (ALAD) method designs a BiGAN-based framework for learning
closer X and GðEðXÞÞ efficiently and the abnormality estimation is just based on normal features.

� ADC: this is a variant of the proposed model, where we only use AnoS as an abnormality estimation without the self-
learning process.

As some of these baselines cannot deal with two-dimensional features, i.e., Xt
ni
is a matrix, we utilize PCA to reduce features

into 1� 10 to provide a fair comparison with the same input while maintaining the time-series characteristics. For each
approach, the parameters are tuned via cross-validation on training data. We set a ¼ 0:8 and b ¼ 0:2 to control the relative
1 https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset
2 https://www.unb.ca/cic/datasets/ids-2017.html
3 http://kdd.ics.uci.edu/databases/kddcup99/

536

https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset
https://www.unb.ca/cic/datasets/ids-2017.html
http://kdd.ics.uci.edu/databases/kddcup99/

X. Meng, S. Wang, Z. Liang et al. Information Sciences 571 (2021) 527–542
contribution of normal and abnormal features, and the c; d;1� c� d are set to be 0.8, 0.1, and 0.1 for three terms of AnoS
respectively. The final AnoST is obtained with s ¼ 1. More detailed discussion on parameter selection will be presented in
Section 5.5. Every experiment is conducted five times and the average results are reported.

5.1.3. Implementation details
For SemiADC, the model architectures for both datasets are the same. As SemiADC has four neural network components,

i.e., G;D; E and C, we present the details of each component separately. (1) For generator, we use a three-layer MLP with the
number of hidden units in each layer as 16, 12 and 10, respectively. (2) For the encoder, we adopt a two-layer MLP with 12
hidden units and 16 hidden units, respectively. The input dimension and output dimension of the whole encoder are 10 and
16. (3) For discriminator, the first 12-unit dense layer separately handles the two inputs, i.e., the latent vector Z and the input
X, and then concatenate them as input to the second 16-unit dense layer. (4) The classifier contains two inputs. For input Z,
the first layer is the same to the discriminator. For input X, a two-unit LSTM layer is used with attention mechanism and the
output of attention mechanism is put into a 12-unit dense layer. After that, we concatenate the output for Z and X and put
them into the dense layer with 16 units. To optimize the deep network, Adam algorithm is adopted with the learning rate as
0.01 and momentum decay as 0.5.

5.1.4. Evaluation metrics
We utilize four popular evaluation metrics precision; recall; F1 and AUC (Area under ROC Curve) to evaluate the perfor-

mance of anomaly detection, which lie in ½0;1� and a higher value means better performance. As the outputs of the above
algorithms are abnormality estimation, we take the top M as abnormal. To calculate the aforementioned precision; recall
and F1;M is set to be the number of abnormal instances in the testing sets for both datasets.

5.2. Performance comparison of anomaly detection

To meet the main targets of our experiments and answer the first question, we will evaluate the precision; recall; F1 and
AUC on the testing sets. As there are two reasons leading to inaccurate labels, we have two kinds of label condition, i.e.,
N u knw with known attacks, andN u unk with unknown attacks. Since their settings of training sets are totally different, we will
evaluate their anomaly detection performance separately in Section 5.2.1 and 5.2.2. Besides, we will provide a real example
in Section 5.2.3 with explainable results.

5.2.1. Anomaly detection under inaccurate labels from N u knw

We first conduct the experiments when N u knw–£ and N u unk ¼ £. To simulate the settings of N u knw, we randomly
select 10% of each attack in N l from the training sets, and replace their labels as normal. For SemiADC, we conduct 6 times
of self-learning iterations and update K label conditions in each iteration (K is set to be 300 for DARPA1998 and 20 for
CICIDS2017 based on their numbers of abnormal nodes). The experiment is conducted five times and the average anomaly
detection performances with standard deviation are reported in Table 1 and Table 2. From the table, we observe:

� By utilizing abnormal nodes, our ADC can outperform GANomaly and GAN-AD, which is because GANomaly and GAN-AD
fully depend on the inaccurate labeled normal nodes, while ADC can handle this situation based on the regularization of
labeled abnormal N l.

� With only normal nodes, ALAD has similar performance to ADC for its optimized BiGAN-based framework.
� Our SemiADC achieves substantial improvements than other baseline methods in both datasets. Specially, from the com-
parison to the ADC, the great performance increase should owe to both temporal correlations and the self-learning
process.

Based on the aforementioned observations, we conclude that SemiADC outperforms the state-of-the-art anomaly detection
approaches under inaccurate labels from N u knw.

5.2.2. Anomaly detection under inaccurate labels from N u unk

We conduct the experiments of N u unk–£ and N u knw ¼ £. To simulate the settings of zero-day vulnerability, we extract
time windows containing ‘‘Warezclient” and ‘‘Bot” attacks from DARPA1998 and CICIDS2017 separately, and replace all their
labels as normal in the training sets. The average results of anomaly detection on the testing sets are shown in Table 3 and
Table 4, from which we can observe:

� Compared to inaccurate labels from N u knw with unknown attacks, most of the results decrease, which shows there are
more difficulties to tackle unknown attacks than the known ones.

� ADC is overpassed by some of the baseline methods. It is because nodes with zero-day attacks are mislabeled as normal,
which contaminate both abnormal and normal datasets. ADC has bad effects from both abnormal nodes and normal
nodes, while the other baselines are only affected by the normal nodes.
537

Table 1
Anomaly detection performance comparison under inaccurate labels from N u knw with known attacks in DARPA1998.

Methods DARPA1998

precision recall F1 AUC

REPEN 0.8849 ± 0.1184 0.9267 ± 0.0408 0.9053 ± 0.0385 0.8410 ± 0.0337
GANormaly 0.8792 ± 0.0655 0.9262 ± 0.0567 0.9021 ± 0.0551 0.7943 ± 0.1011
GAN-AD 0.9132 ± 0.0311 0.9188 ± 0.0375 0.9160 ± 0.0339 0.8453 ± 0.0022
ALAD 0.9116 ± 0.0137 0.9343 ± 0.0202 0.9231 ± 0.0073 0.8397 ± 0.023
ADC 0.9168 ± 0.0283 0.9279 ± 0.0394 0.9223 ± 0.0338 0.8673 ± 0.0673

SemiADC 0.9595 ± 0.0029 0.9603 ± 0.0027 0.9599 ± 0.0027 0.8938 ± 0.0176

Table 2
Anomaly detection performance comparison under inaccurate labels from N u knw with known attacks in CICIDS2017.

Methods CICIDS2017

precision recall F1 AUC

REPEN 0.8509 ± 0.0242 0.8617 ± 0.0310 0.8563 ± 0.0275 0.8995 ± 0.0028
GANormaly 0.8622 ± 0.0643 0.8842 ± 0.0265 0.8731 ± 0.0416 0.7786 ± 0.0644
GAN-AD 0.8667 ± 0.0643 0.8918 ± 0.0506 0.8791 ± 0.0554 0.9439 ± 0.0443
ALAD 0.8885 ± 0.0308 0.8990 ± 0.0203 0.8951 ± 0.0310 0.9786 ± 0.0238
ADC 0.8821 ± 0.0517 0.9231 ± 0.0769 0.9021 ± 0.0540 0.9847 ± 0.0050

SemiADC 0.9387 ± 0.0132 0.9402 ± 0.0146 0.9394 ± 0.0139 0.9921 ± 0.0222

Table 3
Anomaly detection performance comparison under inaccurate labels from N u unk with unknown attacks in DARPA1998.

Methods DARPA1998

precision recall F1 AUC

REPEN 0.8857 ± 0.1208 0.9275 ± 0.0615 0.9061 ± 0.0435 0.8728 ± 0.0075
GANormaly 0.8325 ± 0.0342 0.9560 ± 0.0260 0.8900 ± 0.0309 0.7745 ± 0.2402
GAN-AD 0.9117 ± 0.0290 0.9251 ± 0.0424 0.9183 ± 0.0357 0.8706 ± 0.0400
ALAD 0.9045 ± 0.0266 0.9101 ± 0.0481 0.9094 ± 0.0354 0.8371 ± 0.0303
ADC 0.9055 ± 0.0236 0.8976 ± 0.0249 0.9015 ± 0.0243 0.8815 ± 0.0276

SemiADC 0.9530 ± 0.0053 0.9556 ± 0.0032 0.9543 ± 0.0040 0.8909 ± 0.0230

Table 4
Anomaly detection performance comparison under inaccurate labels from N u unk with unknown attacks in CICIDS2017.

Methods CICIDS2017

precision recall F1 AUC

REPEN 0.7155 ± 0.0031 0.7642 ± 0.0207 0.7390 ± 0.0095 0.9180 ± 0.0691
GANormaly 0.8744 ± 0.0810 0.8606 ± 0.1179 0.8674 ± 0.1382 0.8965 ± 0.0019
GAN-AD 0.8721 ± 0.0044 0.8641 ± 0.0043 0.8681 ± 0.0043 0.9450 ± 0.0431
ALAD 0.8670 ± 0.0083 0.8799 ± 0.0084 0.8734 ± 0.0084 0.9630 ± 0.0692
ADC 0.8865 ± 0.0208 0.8948 ± 0.0146 0.8907 ± 0.0169 0.9935 ± 0.0052

SemiADC 0.9394 ± 0.035 0.9375 ± 0.058 0.9385 ± 0.0045 0.9941 ± 0.0207

X. Meng, S. Wang, Z. Liang et al. Information Sciences 571 (2021) 527–542
� With the utilization of temporal correlations and self-learning, SemiADC makes up to the deficiencies of ADC, and keep
the substantial improvement than other baselines in both datasets.

Based on the observations of Section 5.2.1 and 5.2.2, we can answer the first question that SemiADC can outperform the state-
of-the-art anomaly detection approaches when facing inaccurate labels from both N u knw and N u unk.

5.2.3. Case study
To help understand the performance of our SemiADC in dynamic networks, we conduct a case study in DARPA1998 under

inaccurate labels from N u knw, moving 10% N l in the training set to N u knw like Section 5.2.1. Since the interactions of the
training dataset happen before the testing dataset, the abnormality evaluation on the testing dataset can be regarded as
anomaly detection in the new time windows.

For the label cleaning performance in the training set, we can find an example from those who receive high AnoST, whose
IP is ‘‘135.013.216.191”, and the time window is from ‘‘06/09/1998 19:00:31” to ‘‘06/09/1998 20:40:31”. It is labeled as nor-
mal at first and updated to be abnormal by SemiADC. To verify its correctness, we check the original network flows and data
538

X. Meng, S. Wang, Z. Liang et al. Information Sciences 571 (2021) 527–542
packages, and find that this ‘‘135.013.216.191” does launch 930 times of ‘‘ipsweep” attack from ‘‘06/09/1998 19:00:31” to
‘‘06/09/1998 20:32:54”. This explainable case proves the effectiveness on label cleaning.

Additionally, for the anomaly detection performance in the testing set, we look into an example from those who receive
high AnoST, whose IP is ‘‘199.174.194.016”, and the time window is from ‘‘07/16/1998 17:46:58” to ‘‘07/16/1998 19:26:58”.
It is predicted as abnormal by SemiADC. We further exam the attention score. We find that the first time slot (the first
10 min) receives the highest attention weight, which means that SemiADC detects that attacks may happen in this time win-
dow. To verify if this is correct, we check the original network flows and data packages. We find that this ‘‘199.174.194.016”
does launch a ‘‘smurf” attack at ‘‘07/16/1998 17:46:58” and the corresponding flow lasts 1 min and 45 s. Although there are
inaccurate labels in the training set, we can still accurately detect abnormal nodes in the testing set (i.e., in new time win-
dows). This explainable case proves the effectiveness on anomaly detection in dynamic networks.
5.3. Sensitivity to the inaccurate labels

To evaluate the capacity to tackle inaccurate labels of different percentage and answer the second question, we randomly
select x% ofN l and mislabel them as ‘‘normal” like Section 5.2.3, where x varies in f0;10; . . . ;50g. The results in both datasets
are shown in Fig. 5 and Fig. 6, from which we can observe that, more inaccurate labels can bring worse effects on anomaly
detection, thus both ADC and SemiADC decrease with the x%. Besides, SemiADC decreases slower than ADC, and keeps F1 and
AUC to be higher than 0:85 and 0:8 in DARPA1998 even when half of abnormal nodes are labeled wrong, which proves the
robustness of our model and answers the second question.
5.4. Influence of the self-learning process

The self-learning process can be used not only to improve cleaning performance in training data but also to refine abnor-
mal node detection in the testing set. To answer the third question and evaluate the influence of the self-learning process, we
will iteratively update K labels for 10 times based on AnoST value, where K ¼ 300 for DARPA1998 and K ¼ 20 for CICIDS2017.
In each iteration, we will calculate the F1 and AUC to evaluate both the data cleaning performance in the training set and the
anomaly detection performance in the testing set. Besides, to provide enough inaccurate labels, we set x to be 10 for
DARPA1998 and 20 for CICIDS2017 based on the number of abnormal nodes.

After 10 times of self-learning iterations, we obtain the results in Fig. 7 and Fig. 8. We can observe that, with the increase
of iteration times, cleaning performance on the training set first increases, suggesting that we do find the real abnormal
nodes from the candidate abnormal, and correct their inaccurate labels. After the iteration times reach a certain point,
the cleaning performance decreases because almost all abnormal nodes have been detected and cleaned in previous itera-
tions, and no more abnormal nodes can be found. Similarly, the anomaly detection performance on the testing set first
increases then decreases for the same reason.
5.5. Parameter analysis

There are two important pre-defined hyper-parameters, i.e., a and s, controling the relative contribution of normal and
abnormal feature, and the relative contribution of feature and structure modeling, respectively. To answer the fourth ques-
tion, we conduct the anomaly detection with different parameters. The results on AUC are shown in Fig. 9 and Fig. 10.

We first evaluate the anomaly detection performance under different a. The value of a changes from 0.1 to 1, showing the
increasing contribution of normal features. Accordingly, the value of b changes from 0.9 to 0, indicating the decreasing con-
tribution of abnormal features. From Fig. 9, we can observe that the anomaly detection first increases with a and then
decreases, which is good for parameter selection. Also, when a ¼ 1 and b ¼ 0 (i.e., no contributions from negative features),
we can achieve a high AUC results, showing that although both normal and abnormal features can provide help, normal fea-
tures can have more impacts.

To evaluate the anomaly detection results under different s, we change the value of s from 0.1 to 1, indicating the increas-
ing contribution of the structure-enhanced model. From Fig. 10, we can observe that the anomaly detection performance
keeps increasing with s, demonstrating the importance of utilizing structure-based temporal correlations.
6. Conclusions

In this paper, we investigate a novel problem of anomaly detection in communication networks with inadequate and
inaccurate labels. We propose a new semi-supervised anomaly detection framework SemiADC based on GAN and self-
learning to tackle the inadequacy and inaccuracy problems for dynamic communication networks. The proposed framework
can generate latent normal features with regularization from existing abnormal ones, utilize self-training to clean the train-
ing set, and novelly improve the anomaly detection based on time-series feature similarities and structure-based temporal
correlations. Experimental results on real-world datasets demonstrate the effectiveness and robustness of the proposed
SemiADC, which significantly outperforms the state-of-the-art methods.
539

Fig. 5. Sensitivity to the x% in two datasets on F1.

Fig. 6. Sensitivity to the x% in two datasets on AUC.

Fig. 7. Data cleaning performance in the training set and anomaly detection performance in the testing set on F1 with 10 times self-learning iterations.

Fig. 8. Data cleaning performance in the training set and anomaly detection performance in the testing set on AUC with 10 times self-learning iterations.

X. Meng, S. Wang, Z. Liang et al. Information Sciences 571 (2021) 527–542

540

Fig. 9. Impact of a on anomaly detection performance..

Fig. 10. Impact of s on anomaly detection performance.

X. Meng, S. Wang, Z. Liang et al. Information Sciences 571 (2021) 527–542
There are several interesting directions need further investigation. First, in this work, though we consider time series, we
do not exploit the streaming data. Thus, we would like to explore online cyber anomaly detection with low costs in a stream-
ing setting. Second, as timely supervisions can provide great help for detecting zero-day attacks, we would like to study how
to exploit new labels for online learning. Third, based on the detected label conditions in this paper, to specify the exact
abnormal flows would be another interesting future direction.

CRediT authorship contribution statement

Xuying Meng: Conceptualization, Methodology, Writing - original draft. Suhang Wang: Writing - review & editing. Zhi-
min Liang: Software, Validation. Di Yao: Writing - review & editing. Jihua Zhou: Supervision. Yujun Zhang: Funding acqui-
sition, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

This work is supported in whole or in part, by National Key Research and Development Program of China
(2018YFB1800403), the research program of Network Computing Innovation Research Institute (E061010003), National
Science Foundation of China (61902382, 61972381, 61672500) and the Strategic Priority Research Program of Chinese Acad-
emy of Sciences (XDC02030500).

References

[1] Y. Ban, X. Liu, L. Huang, Y. Duan, X. Liu, W. Xu, No place to hide: Catching fraudulent entities in tensors, in: WWW, 2019..
[2] B.L. Bars, A. Kalogeratos, A probabilistic framework to node-level anomaly detection in communication networks, INFOCOM, in, 2019.
[3] S. Ranshous, S. Shen, D. Koutra, S. Harenberg, C. Faloutsos, N.F. Samatova, Anomaly detection in dynamic networks: a survey, Wiley Interdisc. Rev.:

Comput. Stat. 7 (3)..
[4] W. Cheng, K. Zhang, H. Chen, G. Jiang, Z. Chen, W. Wang, Ranking causal anomalies via temporal and dynamical analysis on vanishing correlations, in:

KDD, 2016..
541

http://refhub.elsevier.com/S0020-0255(21)00385-6/h0010
http://refhub.elsevier.com/S0020-0255(21)00385-6/h0010

X. Meng, S. Wang, Z. Liang et al. Information Sciences 571 (2021) 527–542
[5] R.A. Rossi, B. Gallagher, J. Neville, K. Henderson, Modeling dynamic behavior in large evolving graphs, WSDM, in, 2013.
[6] M. Ahmed, A.N. Mahmood, J. Hu, A survey of network anomaly detection techniques, J. Network Comput. Appl..
[7] R. Chalapathy, S. Chawla, Deep learning for anomaly detection: A survey, arXiv preprint arXiv:1901.03407..
[8] V. Jyothsna, V.V.R. Prasad, A review of anomaly based intrusiondetection systems, Int. J. Comput. Appl. 28 (7) (2011) 26–35.
[9] S. Mohurle, M. Patil, A brief study of wannacry threat: Ransomware attack 2017, Int. J. Adv. Res. Comput. Sci. 8 (5)..
[10] S. Mukkamala, A.H. Sung, Detecting denial of service attacks using support vector machines, FUZZ-IEEE, in, 2003.
[11] Y. Zhou, M. Han, L. Liu, J.S. He, Y. Wang, Deep learning approach for cyberattack detection, in: INFOCOM Workshops, 2018..
[12] J. Kim, S. Bu, S. Cho, Zero-day malware detection using transferred generative adversarial networks based on deep autoencoders, Inf. Sci..
[13] Q. Huang, P.P.C. Lee, Ld-sketch: A distributed sketching design for accurate and scalable anomaly detection in network data streams, in: INFOCOM,

2014. .
[14] I. Nevat, D.M. Divakaran, S.G. Nagarajan, P. Zhang, L. Su, L.L. Ko, V.L.L. Thing, Anomaly detection and attribution in networks with temporally correlated

traffic, IEEE/ACM Trans. Netw. 26 (1)..
[15] J.J.Q. Yu, Y. Hou, V.O.K. Li, Online false data injection attack detection with wavelet transform and deep neural networks, IEEE Trans. Ind. Inf. 14 (7)

(2018) 3271–3280.
[16] D. Eswaran, C. Faloutsos, Sedanspot: Detecting anomalies in edge streams, in: ICDM, 2018..
[17] D. Eswaran, C. Faloutsos, S. Guha, N. Mishra, Spotlight: Detecting anomalies in streaming graphs, in: KDD, 2018..
[18] X. Zhu, A.B. Goldberg, Introduction to Semi-Supervised Learning, Morgan & Claypool Publishers, Synthesis Lectures on Artificial Intelligence and

Machine Learning, 2009.
[19] Y. Li, J. Ye, Learning adversarial networks for semi-supervised text classification via policy gradient, KDD, in, 2018.
[20] R.A.R. Ashfaq, X. Wang, J.Z. Huang, H. Abbas, Y. He, Fuzziness based semi-supervised learning approach for intrusion detection system, Inf. Sci. 378..
[21] G. Pang, C. Yan, C. Shen, A. van den Hengel, X. Bai, Self-trained deep ordinal regression for end-to-end video anomaly detection, in: CVPR, 2020..
[22] S. Akcay, A.A. Abarghouei, T.P. Breckon, Ganomaly:Semi-supervised anomaly detection via adversarial training, ACCV, in, 2018.
[23] D. Li, D. Chen, J. Goh, S. Ng, Anomaly detection with generative adversarial networks for multivariate time series, arXiv preprint abs/1809.04758..
[24] H. Zenati, M. Romain, C. Foo, B. Lecouat, V. Chandrasekhar, Adversarially learned anomaly detection, in: ICDM, 2018..
[25] H. Zenati, C.S. Foo, B. Lecouat, G. Manek, V.R. Chandrasekhar, Efficient gan-based anomaly detection, arXiv preprint arXiv:1802.06222..
[26] I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.C. Courville, Y. Bengio, Generative adversarial nets, in: NIPS, 2014..
[27] J. Donahue, P. Krähenbühl, T. Darrell, Adversarial feature learning, arXiv preprint..
[28] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8) (1997) 1735–1780.
[29] D.P. Dubhashi, A. Panconesi, Concentration of Measure for the Analysis of Randomized Algorithms, Cambridge University Press, 2009.
[30] G. Pang, L. Cao, L. Chen, H. Liu, Learning representations of ultrahigh-dimensional data for random distance-based outlier detection, in: KDD, 2018..
[31] D.D. Clark, S. Landau, The problem isn’t attribution: It’s multi-stage attacks, in, in: Proceedings of the Re-Architecting the Internet Workshop, 2010.
[32] Y. Zhang, X. Luo, H. Luo, A multi-step attack-correlation method with privacy protection, J. Commun. Inf. Networks 1 (4) (2016) 133–142.
[33] M. Inokuchi, Y. Ohta, S. Kinoshita, T. Yagyu, O. Stan, R. Bitton, Y. Elovici, A. Shabtai, Design procedure of knowledge base for practical attack graph

generation, in: AsiaCCS, 2019.
[34] J. Atwood, D. Towsley, Diffusion-convolutional neural networks, in: NIPS, 2016, pp. 1993–2001.
[35] L. Wu, P. Sun, Y. Fu, R. Hong, X. Wang, M. Wang, A neural influence diffusion model for social recommendation, in: SIGIR, 2019.
[36] Z. Yang, D. Yang, C. Dyer, X. He, A.J. Smola, E.H. Hovy, Hierarchical attention networks for document classification, in: NAANL, 2016. .
[37] H. Zhang, I.J. Goodfellow, D.N. Metaxas, A. Odena, Self-attention generative adversarial networks, in: ICML, 2019..
542

http://refhub.elsevier.com/S0020-0255(21)00385-6/h0025
http://refhub.elsevier.com/S0020-0255(21)00385-6/h0025
http://refhub.elsevier.com/S0020-0255(21)00385-6/h0040
http://refhub.elsevier.com/S0020-0255(21)00385-6/h0050
http://refhub.elsevier.com/S0020-0255(21)00385-6/h0050
http://refhub.elsevier.com/S0020-0255(21)00385-6/h0075
http://refhub.elsevier.com/S0020-0255(21)00385-6/h0075
http://refhub.elsevier.com/S0020-0255(21)00385-6/h0090
http://refhub.elsevier.com/S0020-0255(21)00385-6/h0090
http://refhub.elsevier.com/S0020-0255(21)00385-6/h0090
http://refhub.elsevier.com/S0020-0255(21)00385-6/h0095
http://refhub.elsevier.com/S0020-0255(21)00385-6/h0095
http://refhub.elsevier.com/S0020-0255(21)00385-6/h0110
http://refhub.elsevier.com/S0020-0255(21)00385-6/h0110
http://refhub.elsevier.com/S0020-0255(21)00385-6/h0140
http://refhub.elsevier.com/S0020-0255(21)00385-6/h0145
http://refhub.elsevier.com/S0020-0255(21)00385-6/h0145
http://refhub.elsevier.com/S0020-0255(21)00385-6/h0155
http://refhub.elsevier.com/S0020-0255(21)00385-6/h0155
http://refhub.elsevier.com/S0020-0255(21)00385-6/h0160
http://refhub.elsevier.com/S0020-0255(21)00385-6/h0165
http://refhub.elsevier.com/S0020-0255(21)00385-6/h0165
http://refhub.elsevier.com/S0020-0255(21)00385-6/h0165
http://refhub.elsevier.com/S0020-0255(21)00385-6/h0170
http://refhub.elsevier.com/S0020-0255(21)00385-6/h0170
http://refhub.elsevier.com/S0020-0255(21)00385-6/h0175
http://refhub.elsevier.com/S0020-0255(21)00385-6/h0175

	Semi-supervised anomaly detection in dynamic communication networks
	1 Introduction
	2 Related work
	2.1 Anomaly detection in communication networks
	2.2 Semi-supervised anomaly detection

	3 Problem statement and notations
	4 Proposed framework
	4.1 Learning the normal feature distribution
	4.2 Exploring potential abnormal nodes
	4.2.1 Feature-based abnormality evaluation
	4.2.2 Structure-enhanced abnormality evaluation

	4.3 Attention for time slots
	4.4 Proposed framework – SemiADC

	5 Experimental analysis
	5.1 Experimental settings
	5.1.1 Datasets
	5.1.2 Compared methods
	5.1.3 Implementation details
	5.1.4 Evaluation metrics

	5.2 Performance comparison of anomaly detection
	5.2.1 Anomaly detection under inaccurate labels from [$]{{\cal{N}}}_{u_knw}[$]
	5.2.2 Anomaly detection under inaccurate labels from [$]{{\cal{N}}}_{u_unk}[$]
	5.2.3 Case study

	5.3 Sensitivity to the inaccurate labels
	5.4 Influence of the self-learning process
	5.5 Parameter analysis

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References

