
Sub-trajectory-
and Trajectory-Neighbor-based Outlier

Detection over Trajectory Streams

Zhihua Zhu1,2, Di Yao1,2, Jianhui Huang1, Hanqiang Li3, and Jingping Bi1(B)

1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
{zhuzhihua,yaodi,huangjianhui,jpingbi}@ict.ac.cn

2 University of Chinese Academy of Sciences, Huairou, China
3 National Defence Key Laboratory of Blind Processing of Signals, Chengdu, China

cnpla@126.com

Abstract. Precisely and efficiently anomaly detection over trajectory
streams is critical for many real-time applications. However, due to
the uncertainty and complexity of behaviors of objects over trajectory
streams, this problem has not been well solved. In this paper, we propose a
novel detection algorithm, called STN-Outlier, for real time applications,
where a set of fine-grained behavioral features are extracted from the
sub-trajectory instead of point and a novel distance function is designed
to measure the behavior similarity between two trajectories. Addition-
ally, an optimized framework(TSX) is introduced to reduce the CPU
resources cost of STN-Outlier. The performance experiments demonstrate
that STN-Outlier successfully captures more fine-grained behaviors than
the state-of-the-art methods; besides, the TSX framework outperforms
the baseline solutions in terms of the CPU time in all cases.

Keywords: Outlier · Sub-trajectory · Trajectory streams

1 Introduction

Today, the location-acquisition devices such as GPS and smart phone, moni-
toring the behaviors of vehicles and people, are generating massive-scale high-
speed trajectory streams. The applications like traffic management and security
surveillance, need continuously detect the abnormal objects from high volumes
of objects in such heavy data. Those abnormal objects such as drunk drive in
traffic management or espionage in security surveillance, whose erratic behaviors
are different from the majority in trajectory streams, must be detected efficiently
based on the behaviors over a period of time and reported in time. Even a short
time delay may lead to losses of huge funds.

This work has been supported by the National Natural Science Foundation of China
(No. 61472403 and 61702470) and the Beijing Natural Science Foundation (No.
4182062).

c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10937, pp. 551–563, 2018.
https://doi.org/10.1007/978-3-319-93034-3_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93034-3_44&domain=pdf

552 Z. Zhu et al.

In existing studies, part of researchers use the techniques that normally are
machine learning to get the discriminative model using the global characteristics
of the dataset [3–8]. However, due to the concept drift in trajectory stream, which
means the behaviors of the target object change over time in unforeseen ways,
using one single pre-trained model to continuously detect outliers would lead
to inaccurate results; besides, rebuilding the model periodically would result in
expensive modeling costs for real-time applications. In addition, in a trajectory
stream populated with massive scale moving objects, the moving patterns of
high volumes of moving objects are more dynamic and complex than single
object. That is, the moving pattern of one object over trajectory streams with
a lot of objects is not suit to be modeled by the local continuity assumption
[1,2,9]. Considering the above challenges, Yu et al. [6] proposed a novel method
called TN-Outlier to detect the trajectory outliers over a real-time trajectory
stream. However, the work only used the spatial distance between trajectory
points to evaluate the relationships among trajectories. As a result, it is difficult
to distinguish the difference of behaviors of moving objects especially when they
are close to each other. Although the importance of continuously detecting such
types of outliers, this problem has not been well solved.

Because distance-based outlier is robust against concept drift and amenable
to swiftly evicting obsolete models of outlierness [16]; besides, many works
[4,13,14] used sub-trajectories instead of points to measure the trajectory simi-
larity and achieved better results, but they only considered the directional and
spatial differences between two sub-trajectories which is hard to capture the
detail differences of behaviors. In this paper, we propose a novel distance-based
outlier definition, called Sub-trajectory- and Trajectory-Neighbor-based trajec-
tory Outlier(STN-Outlier), to detect the complex abnormal behaviors in a tra-
jectory stream. The definition not only considers the behavioral approximation
of moving objects in a region, but also takes the duration of the behavioral sim-
ilarity across time into account. Specially, a novel distance function that com-
bines both the inter- and intra-trajectory features in an integrated manner is
designed to measure the fine-grained difference between two trajectories. Then,
a comprehensive framework, called the temporal and spatial-aware examination
(TSX), is introduced to efficiently detect the outliers over high volume trajectory
stream. The experimental studies on synthetic and real Taxi [6,10,11] datasets
demonstrate that the STN-Outlier successfully captures the deviating behav-
iors effectively over other state-of-the-art methods; besides, the TSX framework
outperforms the baseline solutions in terms of the CPU time in all cases.

2 Overview

2.1 Preliminary

We define the scenario of trajectory outlier detection. O = {o1, o2, . . . , on}
denotes a dataset composed of n observed moving objects. Each moving object
om ∈ O is represented as an infinite sequence of trajectory points Trm =
{p1m, p2m, . . . pim, . . .} at timebins {t1, t2, . . . ti, . . .}, where the term ”timebin” is

Outlier Detection over Trajectory Streams 553

referred to the smallest time granularity that ensures each trajectory has at
least one point fall into each bin. Given n moving objects, a trajectory stream
S is represented as n infinite sequences of trajectory points ordered by time-
bins S = {p11p12 . . . p1n, p21p22 . . . p2n, . . . , pi1pi2 . . . pin, . . .}, where pi1p

i
2 . . . p

i
n are said

to fall into the same timebin i in S. Then, a periodic sliding window W with a
fixed window size w and slide length s is used to extract a finite sub-stream for
processing.

Additionally, we use the tuple (pim, pi+1
m ,fsi,i+1

m
) to represent a sub-trajectory

si,i+1
m of Trm, where fsi,i+1

m
is a feature vector collected by other devices.

2.2 Problem Formulation

In Fig. 1, according to [6] Tr6 is obviously recognized as an outlier since it changes
its neighbors frequently. On the contrary, Tr1 and Tr2 would be detected as
inliers, if they keep being neighbors, namely the Euclidean distances between
their points are less than d (a distance threshold) at all 6 timebins. Likewise,
Tr3−5 would be labeled as inliers w.r.t the same d. However, note that Tr3 whose
behavior is completely different from others should be detected as outlier not an
inlier even though its points are close to the points of Tr4 and Tr5.

Fig. 1. Six trajectories in a window with size w = 6. Outlier: Tr6, Tr3; Inlier:
Tr1, T r2, T r4, T r5

To describe the trajectory outliers, e.g. Tr3 in Fig. 1, classes of novel notions
of distance-based outliers are defined referring to the semantics [6].

Definition 1 (Sub-trajectory Neighbor). Given two sub-trajectories si,i+1
m

and si,i+1
n , they are said to be sub-trajectory neighbors if dist(si,i+1

m , si,i+1
n) ≤

d where dist(si,i+1
m , si,i+1

n) is a distance function and d is a distance threshold.

The sub-trajectory neighbor set between Trm and Trn w.r.t a distance
threshold d in a W is denoted as Nd

mn, with |Nd
mn| denoting the size.

Definition 2 (Trajectory Neighbor). In window W , given a distance thresh-
old d and timebin count threshold thrt, trajectory Trm is called a trajectory
neighbor of Trn if |Nd

mn| ≥ thrt.

554 Z. Zhu et al.

Definition 3 (Trajectory Outlier). Given a distance threshold d, a neighbor
count threshold k, and timebin count threshold thrt, a trajectory Trm in the
window W is a trajectory-neighbor based trajectory outlier if Trm has at
most k−1 trajectory neighbors in W with trajectory neighbor as per Definition 2.

Given the parameters d, k, thrt and n trajectories in window W , our goal is
to detect and report all trajectory-neighbor based trajectory outliers in the window
W with high accuracy and efficiency.

3 Methodology

In this section, we introduce a novel distance function for sub-trajectories. The
key of this function is the combination of two types of features that ensures a
significant difference between outliers and inliers can be captured.

3.1 Feature Extraction

To describe the difference of behaviors of trajectories minutely, two types of
features intra- and inter-trajectory features are extracted for each sub-trajectory.

Intra-trajectory Feature. Intra-trajectory features indicate the moving
behavior of each trajectory that can be quantized by the differences of attributes
between two consecutive trajectory points.

(a) The intra-trajectory featurese (b) The inter-trajectory features

Fig. 2. The elements for intra- and inter-trajectory features

Let us consider a window with n 2-dimensions points belonging to Trm.
Specifically, suppose the point is GPS point. Each point pim can be denoted
as (ti, lonpi

m
, latpi

m
) where ti is the ith timebin, lonpi

m
and latpi

m
denote the

longitude and latitude respectively. For sub-trajectory si,i+1
m , four attributes

that intuitively describe the behaviors of one trajectory are extracted as
the intra-trajectory features. As shown in Fig. 2(a), the features are change
of longitude ∆lonsi,i+1

m
= lonpi+1

m
− lonpi

m
, change of latitude ∆latsi,i+1

m
=

latpi+1
m

− latpi
m
, speed vsi,i+1

m
=

√
(∆lonsi,i+1

m
)2 + (∆latsi,i+1

m
)2 / (ti+1 − ti) and

change of rate of turn(ROT) ∆rsi,i+1
m

= rsi,i+1
m

− rsi+1,i+2
m

, where rsi,i+1
m

=
arctan(∆latsi,i+1

m
/∆lonsi,i+1

m
). Specially, for the last sub-trajectory sn−1,n

m of
Trm, we set ∆rsn−1,n

m
= 0.

Outlier Detection over Trajectory Streams 555

In order to intuitively reflect the moving direction change of a trajectory,
attribute d̂si,i+1

m
is defined to flag whether object changes its moving direction

between two consecutive sub-trajectories or not. Given the moving direction of
si+1,i+2
m as the standard direction, d̂si,i+1

m
= 0 if |∆rsi,i+1

m
| ≤ π/4 and d̂si,i+1

m
=

1 otherwise. After computing these features for each sub-trajectory, we get a
feature vector fsi,i+1

m
= (∆lonsi,i+1

m
,∆latsi,i+1

m
, vsi,i+1

m
,∆rsi,i+1

m
, d̂si,i+1

m
).

Inter-trajectory Feature. Inter-trajectory features reflect the spatial differ-
ence and directional difference of two trajectories. It ensures the outliers that
always moves alone or always in the areas where other objects rarely visit can
be detected. The inter-trajectory features consist of two components: the spatial
distance dc and angle distance dθ. Suppose there are two sub-trajectories si,i+1

m

and si,i+1
n , and their elements are intuitively illustrated in Fig. 2(b).

The spatial distance between si,i+1
m and si,i+1

n is denoted as the Euclidean
distance between center points of si,i+1

m and si,i+1
n , namely dc(si,i+1

m , si,i+1
n) =

‖Cm−Cn‖. The angle distance between si,i+1
m and si,i+1

n is defined as Formula 1.
It is the intersection angle between si,i+1

m and si,i+1
n . Here, ‖si,i+1

m ‖ denotes the
length of si,i+1

m .

dθ(si,i+1
m , si,i+1

n) =

{
arccos(si,i+1

n ·si,i+1
m

‖si,i+1
m ‖‖si,i+1

n ‖) if ‖si,i+1
m ‖ &= 0 & ‖si,i+1

n ‖ &= 0

0 otherwise
(1)

3.2 Distance Function

Now based on the features denoted above, the distance function is defined to mea-
sure the similarity between si,i+1

m and si,i+1
n . The function consists of two terms:

similarity measure sim(fsi,i+1
m

,fsi,i+1
n

) and punishing item ω(dc, dθ). Namely:

dist(si,i+1
m , si,i+1

n) = 1 − ω(dc, dθ) × sim(fsi,i+1
m

,fsi,i+1
n

) (2)

In particular, considering the differences of intra-trajectory features in seman-
tic and value, we need a normalization function to normalize the features. How-
ever, due to the uncertainty caused by the concept drift over continuous tra-
jectory streams, the minimum or maximum of each feature cannot be fixed. It
is not suit to use the Min-Max scaling to normalize the features. Likewise, the
Z-score standardization cannot be used.

Given two feature vectors fsi,i+1
m

, fsi,i+1
n

, a ratio ρj = |f j

si,i+1
m

−
f j

si,i+1
n

| /max{f j

si,i+1
m

, f j

si,i+1
n

} is computed to normalize the differences between
features into [0, 1], where f j is the jth feature in feature vector. However,
when f j ∈ {∆lon,∆lat,∆r}, if one of f j

si,i+1
m

and f j

si,i+1
n

is equal to 0, the ρj

would be amplified to 1 even if their difference is small; otherwise, we expect
a small difference amplify to 1 when one of objects is static. Therefore, we use
σ = sin(dθ(si,i+1

m , si,i+1
n)) as the constraint factor to limit the value of ρj . That

is, the smaller dθ is, the smaller ρj is. The new ratio ρ̂j is defined as follows.
If vsi,i+1

m
= 0 or vsi,i+1

n
= 0, then ρ̂j = ρj . And if vsi,i+1

m
&= 0, vsi,i+1

n
&= 0 and

f j ∈ {∆lon,∆lat,∆r}, then ρ̂j = ρj × σ.

556 Z. Zhu et al.

Specially, for max{f j

si,i+1
m

, f j

si,i+1
n

} = 0, we set ρj = 0. Based on the formulas
above, a new vector ρ̂ = (ρ̂∆lon, ρ̂∆lat, ρ̂v, ρ̂∆r, ρ̂d̂) is computed for each sub-
trajectory pair. Then, to map the similarity between two sub-trajectories into
[0, 1], the function sim(fsi,i+1

m
,fsi,i+1

n
) is defined as

sim(fsi,i+1
m

,fsi,i+1
n

) = 1 − ‖ρ̂‖2√
|ρ̂|

(3)

where ‖ ·‖2 denotes the L2 norm and |ρ̂| is the size of ρ̂. It means that the more
similar fsi,i+1

m
and fsi,i+1

n
are, the bigger value of sim(fsi,i+1

m
,fsi,i+1

n
) is.

Next, considering the influence of spatial distance and moving direction on
similarity comparison we define a punishing item ω(dc, dθ) to control the value of
sim(si,i+1

m , si,i+1
n). Given a spatial distance limit ξ, the punishing item ω(dc, dθ)

is defined as:

ω(dc, dθ) =

{
e− |dc−ξ|

ξ × cos(dθ) if dc > ξ

cos(dθ) otherwise
(4)

Namely, given the spatial distance threshold ξ set by user, the farther apart
two sub-trajectories the less similar they are. Likewise, the bigger difference of
moving direction between two sub-trajectories the less similar they are.

4 Detection Framework

4.1 The Basic Framework

The basic framework of our trajectory outlier detection is shown as Fig. 3. In the
basic framework, the STN-Outlier detects the outliers by first running a range
query search for each trajectory at current window. The time complexity is O(n)
where n is the number of trajectories in current window. Then, it traverses all
neighbor of Trm to determine the status of Trm, of which the worst case is to
traverse all n − 1 trajectories. Thus, its worst complexity is O(wn2) where w is
window size. And, it would fully reuses the neighbor relationships collected in
the previous window, there is high computational costs when n is large.

Fig. 3. The basic framework of STN-Outlier

Outlier Detection over Trajectory Streams 557

Inspired by the minimal examination (MEX) framework [6] and the locality-
sensitive hashing (LSH) algorithm [16], we design a temporal and spatial-aware
examination (TSX) framework that efficiently solves this issue.

4.2 The Optimized Framework

A trajectory Trm will be labeled based on the neighbor evidence that has been
acquired for this object. Note that those neighbors must be near to Trm in
space. If a trajectory is far away from Trm, namely exceeding a radius R, then
the trajectory must be non-neighbor of Trm. This fact leads to an important
observation. That is, to identify whether a trajectory Trm is a neighbor-based
inlier, it is unnecessary to compare with all other trajectories in window W .
Instead a subset of the full trajectories that are near to Trm often can be suffi-
cient to prove that it is an inlier. To acquired the small yet sufficient subset of
trajectories for Trm a concept of R-near Subset with LSH is defined.

Specially, in TSX framework, the location of a trajectory is represented as
an average of full points in the current window. Namely, the location lm of a tra-
jectory Trm in window W is denoted as

∑w
j=1 pj

m

w , where W = {p1m, p2m, . . . , pwm}.

Definition 4 (R-near Subset). Given an LSH family F and a trajectory set
DBTr in a window W , for a trajectory Trm ∈ DBTr, its R-near Subset TRTrm is
denoted as {Trn|h(ln) = h(lm), h ∈ F , T rn ∈ DBTr} with a collision probability
at least 1 − δ, which denotes the probability that Trm, T rn collide for a hash
function uniformly chosen from the family F .

In particular, we choose E2LSH [17] that is defined for the case where the
distances are measured according to the Euclidean norm to solve the R-near
Subset problem. In E2LSH, a new family G of hash functions g is defined. Each
function g is obtained by concatenating K functions h1, . . . , hK from F , i.e.,
g(p) = [h1(p), . . . , hK(p)]. Finally, the algorithm constructs L hash tables, each
corresponding to a different randomly chosen hash function g. Based on the
definitions and theory analysis for E2LSH, we get the following lemma.

Lemma 1. Given a E2LSH family G and L corresponding hash tables, a tra-
jectory Trm could find a R-near subset TRTrm = {Trn|gj(lm) = gj(ln), gj ∈
{g1, . . . , gL}} with a collision probability 1 − δ ≥ 0.9 iff L ≥ log10

−log(1−PK
1)

for a
fixed K and P1, where P1 = p(R) = Prh∈F [h(p) = h(q)] = 1 − 2norm(−b/R) −

2√
2πb/R

(1 − e−b2/2R2
) that b is the size of bucket.

Proof. Consider a query trajectory Trm and an R-near trajectory Trn of Trm.
According to the definitions of E2LSH, we get Prg∈G [g(q) = g(p)] ≥ PK

1 .
Thus, Trm and Trn fail to collide for all L functions gj with probability at most
(1−PK

1)L. Requiring that the trajectory Trm collides with Trn on some function
gj is equivalent to saying 1− (1−PK

1)L ≥ 1− δ. Therefore, given a fixed K and
P1, if setting 1 − δ ≥ 0.9 namely δ ≤ 0.1, then we get: 1 − (1 − PK

1)L ≥ 0.9 ⇔
(1 − P k

1)L ≤ 0.1 ⇔ L × log(1 − PK
1) ≤ log(1/10) = −log10 ⇔ L ≥ log10

−log(1−PK
1)

.

558 Z. Zhu et al.

Lemma 1 shows the effectiveness of R-near Subset that guarantees the effec-
tiveness and efficiency of STN-Outler. with the R-near subset, we are ready to
propose one spatial-aware principle for optimizing the MEX framework.

Algorithm 1. STN-Outlier using TXS framework
Input: Trajectory Set DBTr , the current window Wc, hash tables H, a E2LSH family G,

parameters: d, k, and thrt
Output: Outliers

1 DBlt = []
2 for each Tri ∈ DBTr do
3 if Tri.lifetime ≤ Wc.start then
4 DBlt ← Tri

5 for each Tri ∈ DBlt do
6 for each Trj ∈ Tri.NT do
7 Time-aware Examination for Tri and Trj
8 Minimal Support examination for Tri

9 if |Tri.Neighbors| < k then
10 TRTrm ← queryRnearSubset(H, G, Trm)
11 for each Trj ∈ (TRTrm) do
12 Time-aware Examination for Tri and Trj
13 Minimal Support examination for Tri

14 if |Tri.getNeighbors| < k then
15 Tri is ”outlier”

16 updating the lifetime of Tri

PRINCIPLE 1. Spatial-aware examination : Given a query Q and the
trajectory set DBTr in the current window Wc, for evaluating a trajectory Trm,
the examination principle suggests that a R-near subset TRTrm can replace the
full trajectories DBTr to determination the status of Trm.

This principle aims to prove the status of a given trajectory Trm by only
discovering its R-near trajectories instead of searching through full trajectories.
For space reasons, we omit the three principles(lines 2–4, 7 and 8 in Algorithm1)
of MEX framework and their proofs. See [6] for detail principles and proofs.

The new trajectory outlier detection algorithm is shown as Algorithm 1.
The status of a trajectory will be re-examined when its lifetime expires(lines
2−4). And whenever a trajectory is being re-examined, the minimal support
examination(lines 8 and 13) will cooperate with time-aware examination(lines 7
and 12) to re-establish the minimal support(=k) in its R-near subset(line 10).
It does so by only acquiring enough new evidence rather than building a new
minimal support from scratch.

5 Experiments

All experiments are performed on a server with Intel Xeon CPU 2.10GHz. In our
implementation, we simulate the streaming manner by using a sliding window
in the main memory.

Datasets. The experiments are performed on synthetic datasets and real taxi
data [6]. The real taxi data contains 1k trajectories and a outlier set manu-
ally labeled by a user study. However, in the user study the behavior of a taxi

Outlier Detection over Trajectory Streams 559

driver is classified as abnormal by users only if he always operates in areas that
other drivers rarely visit. Therefore, we apply two transformations [18], namely
Add Noise Transformation and Random Shift Transformation, to the original
trajectories and generate a series of new outliers to enrich the types of outliers.

Metrics and Measurements. For the effectiveness evaluation, we measure the
quality of reported outliers by F1-Measure, at which Precision = |R0∩D0|

|D0| and

Recall = |R0∩D0|
|R0| where R0 denotes the set of outliers and D0 is the outliers

detected by the algorithm.
For the efficiency evaluation, we measure the CPU resources cost by recording

the cost of the first window, at which each trajectory searches its neighbors over
all trajectories and compares at least thrt segments with other trajectories.

5.1 Effectiveness Evaluation

We generate a stream with a controlled number of outliers. Specifically, 200
normal trajectories are first randomly sampled from the real taxi dataset. A
random offset of radius R = 5m is added to each sampled trajectory to emulate
3–10 trajectories. Then, 100 trajectories are randomly chosen from the sampled
trajectories. Half of them are transformed by Add Noise Transformation, while
the other half are transformed by Random Shift Transformation.

As shown in Table. 1, we evaluate the performance of STN-Outlier in
comparison with TN-Outlier and a number of well-known sub-trajectory-based
similarity measures, including CTraStream [14] and Hausdorff [13]. We execute

Table 1. Performance comparison by three evaluation metrics.

w = 15

Method k = 1 k = 4 k = 8

Precision Recall F1 Precision Recall F1 Precision Recall F1

STN-Outlier thrt = 8 0.9177 0.9602 0.9385 0.5488 0.9668 0.7002 0.1702 0.9867 0.2904

thrt = 11 0.7956 0.9801 0.8783 0.4639 0.9801 0.6297 0.1576 0.9867 0.2718

TN-Outlier thrt = 8 1.0 0.3907 0.5619 0.4957 0.3907 0.4370 0.1442 0.6688 0.2373

thrt = 11 1.0 0.4304 0.6018 0.5038 0.4304 0.4642 0.1478 0.6953 0.2439

STN-CTraStream thrt = 8 1.0 0.3576 0.5268 0.45 0.3576 0.3985 0.1443 0.6423 0.2357

thrt = 11 1.0 0.3841 0.5550 0.3295 0.3841 0.3547 0.1380 0.6754 0.2292

STN-Hausdorff thrt = 8 0.1604 0.4569 0.2375 0.0576 0.5430 0.1041 0.0747 0.7549 0.1359

thrt = 11 0.1579 0.5629 0.2467 0.0585 0.5695 0.1061 0.0742 0.7682 0.1353

w = 30

Method k = 1 k = 4 k = 8

Precision Recall F1 Precision Recall F1 Precision Recall F1

STN-Outlier thrt = 15 0.9423 0.9735 0.9576 0.5424 0.9735 0.6966 0.1710 0.9801 0.2913

thrt = 22 0.8333 0.9933 0.9063 0.5 0.9933 0.6651 0.1651 0.9933 0.2832

TN-Outlier thrt = 15 1.0 0.3509 0.5196 0.4690 0.3509 0.4015 0.1389 0.6357 0.2280

thrt = 22 1.0 0.4105 0.5821 0.4920 0.4105 0.4476 0.1456 0.6887 0.2404

STN-CTraStream thrt = 15 1.0 0.3377 0.5049 0.4690 0.3509 0.4015 0.1403 0.6357 0.2299

thrt = 22 1.0 0.3576 0.5268 0.4782 0.3642 0.4135 0.1434 0.6688 0.2362

STN-Hausdorff thrt = 15 0.184 0.4569 0.2623 0.0554 0.5298 0.1003 0.0723 0.7417 0.1319

thrt = 22 0.1611 0.5496 0.2492 0.0596 0.5827 0.1081 0.0744 0.7748 0.1358

560 Z. Zhu et al.

Fig. 4. The perfor-
mance of methods on
detecting three types of
outlier

Fig. 5. The change of F1
with varying K and b/R

Fig. 6. The change of
CPU time with varying K
and b/R

multiple queries that vary the parameters k, thrt and w to study how the metrics
is impacted in parameter space. Referring the experimental parameters setting
in [6], the distance threshold d is fixed as 0.1 and 300 m (=ξ) for STN-Outlier
and other methods respectively. Besides, we set the weight set of Hausdorff to
(1, 1, 1) after tuning.

From Table. 1, STN-Outlier shows the better performance than other meth-
ods in F1-Measure, even if the inlier criteria is vary strict. In other words, STN-
Outlier not only detects more outliers than others but also guarantees less false
alarms. Furthermore, we study the performance of methods on detecting three
types of outliers. When the inlier criteria is most relaxed where k = 1, thrt = 8
and w = 15, the results are shown as Fig. 4. The most of outliers detected by
TN-Outlier or CTraStream are manually labeled outliers, of which the detecting
probability is near to 100%, while the outliers generated by the transformations
are rarely or not detected. This is because the distance function in TN-Outlier
or CTraStream is less focused on the differences of behaviors. In summary, com-
pared with STN-Outlier, the TN-Outlier and other methods are worse in cap-
turing and modeling more complex abnormal behaviors.

5.2 Efficiency Evaluation

Next we evaluate the efficiency of STN-Outlier with TSX. We vary the most
important parameters, to (1) assess the impact of TSX framework versus the
baseline, (2) evaluate sensitivity of parameter variations on STN-Outlier.

Varying Parameters of LSH. In this scenario, we vary the thresholds K
and b/R(P1) to study how F1-Measure and CPU time are impacted. The other
parameters are fixed as k = 1, thrt = 22, w = 30, R = ξ = 300 and d = 0.1.

Figure 5 shows that the F1-Measure is directly proportional to b/R, because
more trajectories are mapped into the same bucket with the size of bucket
increasing. It ensures that STN-Outlier finds enough evidences to classify one
trajectory as inlier. By contrast, the F1-Measure decreases when K enlarges.
That is, with K increasing, the trajectories in the same bucket must have a
more similar encoding (g(li)), causing that one trajectory lacks enough R-near

Outlier Detection over Trajectory Streams 561

Fig. 7. The change of
CPU time with varying
thrt

Fig. 8. The change of
CPU time with varying k

Fig. 9. The change of
CPU time with varying n

trajectories to determine its status. However, we notice that when the buckets
(b/R) are enough big, the K has less influence on F1-Measure and the results
are near to that of the solutions without the TSX framework in Table. 1.

Figure 6 shows that the CPU time of algorithm is also directly proportional to
b/R due to one trajectory has to compare with more trajectories in one bucket to
label its status. Then, the CPU time decreases with K increasing for a fixed b/R.
That is, an increase on collision probability caused by K reduces the number
of misclassification trajectories, and enables one trajectory not to compare with
unnecessary trajectories.

In summary, the R-near subset could improve the efficiency of algorithm
while ensure the effectiveness by selecting appropriate parameters.

Varying Other Parameters. Next we evaluate the efficiency of STN-Outlier
using the real taxi data and synthetic datasets. We denote the MEX-based base-
line solution for STN-Outlier as STN-MEX and the TSX-based solution as STN-
TSX respectively. In particular, we fix the window size to 30, d to 0.2, ξ to 2,000m
and R to 4,000m for the experiments on the real taxi data, while fix the window
size to 30, d to 0.9, ξ to 300m and R to 300m for the synthetic datasets. In
addition, the parameters K and b/R in LSH for all the cases are set to 10 and
100 respectively.

First, we evaluate the effect of varying the timebin count threshold thrt from
1 to the full window size. As shown in Fig. 7, STN-TSX are superior to the
corresponding basic solution w.r.t the CPU time in all cases. Especially when
thrt is set to the full window size, the STN-TSX outperforms the STN-MEX
by a factor of 9x. We notice that the effect of STN-TXS decreases with thrt
increasing. There are two reasons for this trend: (1) the STN-TSX only needs
a few non-neighbor sub-trajectories (Time-aware Examination in Algorithm 1)
to label the relationship of two trajectories as non-neighbor with thrt being big,
and (2) the R-near subset of a trajectory is constant no matter how thrt varies.

Then, we vary the neighbor count threshold k from 4 to 64. The results are
shown as Fig. 8. The STN-TSX saves on average 76% of CPU time compared to
the corresponding MEX solution. As the parameter k increases, the CPU time
of the STN-MEX increases linearly due to more neighbors have to be acquired
to determine the status of a trajectory. By contrary, for the STN-TSX instead

562 Z. Zhu et al.

we observe no sensitivity for varying k. This is because the STN-TSX finds
the neighbors of Trm only by searching its R-near subset that always remains
unchanged no matter how large k is.

Finally, we vary the number of trajectories n from 1k to 10k. In this case, we
generate five synthetic datasets containing 1k to 10k trajectories. To eliminate
the effect of variations in the outlier rates, we stabilize the outlier rate in all
cases to around 4% by slightly adjusting the number of outliers. As expected,
Fig. 9 shows that the CPU time cost of STN-Outlier increases linearly as the
number of trajectories increases, since a trajectory must compare with more
trajectories in the current window until it finds k neighbors. Furthermore, it
is obvious that STN-TSX exhibit much better performance than MEX-based
solution. Especially, when n is up to 10k, the factor can be more than 300x.

6 Conclusion

In this work we focus on the outlier detection on trajectory streams. After
analyzing the requirements of trajectory stream applications, we introduce a
distance-based trajectory outlier definitions. Considering the complex behaviors
of trajectories over streams, we select sub-trajectory as the analytic unit and
design a novel distance function. We introduce an optimized TSX framework
scalable to big data trajectory streams. The experiments on real taxi data and
synthetic datasets show that STN-Outlier can effectively and efficiently detect
the abnormal objects over high-volume trajectory stream.

References

1. Bu, Y., Chen, L., Fu, A. W.-C., Liu, D.: Efficient anomaly monitoring over moving
object trajectory streams. In: Proceedings of SIGKDD 2009, pp. 159–168 (2009)

2. Aggarwal, C.C., et al.: A framework for clustering evolving data streams. In: Inter-
national Conference on Very Large Data Bases 2003, pp. 81–92 (2003)

3. Knorr, E. M., Ng, R. T.: Algorithms for mining distance-based outliers in large
datasets. In: Proceedings of VLDB 1998, pp. 392–403 (1998)

4. Lee, J.-G., Han, J., Li, X.: Trajectory outlier detection: a partition-and-detect
framework. In: Proceedings of ICDE 2008, pp. 140–149 (2008)

5. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using
ensemble classifiers. In: Proceedings of SIGKDD 2003, pp. 226–235 (2003)

6. Yu, Y., Cao, L., Rundensteiner, E.A.: Detecting moving object outliers in massive-
scale trajectory streams. In: Proceedings of SIGKDD 2014, pp. 422–431 (2014)

7. Li, X., Han, J., Kim, S.: Motion-alert: automatic anomaly detection in massive
moving objects. In: Mehrotra, S., Zeng, D.D., Chen, H., Thuraisingham, B., Wang,
F.-Y. (eds.) ISI 2006. LNCS, vol. 3975, pp. 166–177. Springer, Heidelberg (2006).
https://doi.org/10.1007/11760146 15

8. Li, X., Han, J., et al.: Roam: rule- and motif-based anomaly detection in massive
moving object data sets. In: SIAM International Conference on Data Mining (2007)

9. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving
data streams. In: Proceedings of VLDB 2003, pp. 81–92 (2003)

https://doi.org/10.1007/11760146_15

Outlier Detection over Trajectory Streams 563

10. Yuan, J., et al.: T-drive: enhancing driving directions with taxi drivers intelligence.
J. Trans. Knowl. Data Eng. 25(1), 220–23 (2013)

11. Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., Huang, Y.: T-drive:
driving directions based on taxi trajectories. In: GIS, pp. 99–108 (2010)

12. Freedman, D., Pisani, R., et al.: Statistics. W. W. Norton and Company, New York
(2007)

13. Lee, J., Han, J., Whang, K.: Trajectory clustering: a partition-and-group frame-
work. In: Proceedings of the ACM SIGMOD 2007, pp. 593–604. ACM (2007)

14. Galić, Z.: Spatio-Temporal Data Streams. SCS. Springer, New York (2016).
https://doi.org/10.1007/978-1-4939-6575-5

15. Knorr E.M, Ng R.T.: A unified notion of outliers: properties and computation. In:
Heckerman, D., Mannila, H., Pregibon, D., Uthurusamy, R. (eds) Proceedings of
KDD, Newport Beach, CA, pp. 219–222. AAAI Press, Menlo Park (1997)

16. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-
ing. In: Proceedings of VLDB (1999)

17. Datar, M., Immorlica, N.: Locality-sensitive hashing scheme based on p-stable dis-
tributions. In: Proceedings of the Symposium on Computational Geometry (2004)

18. Wang, H., Su, H., et al.: An effectiveness study on trajectory similarity measures.
In: Twenty-Fourth Australasian Database Conference, vol. 137, pp. 13–22 (2013)

https://doi.org/10.1007/978-1-4939-6575-5

	PC Chairs’ Preface
	General Chairs’ Preface
	Organization
	Contents – Part I
	Classification and Supervised Machine Learning
	Classifier Risk Estimation Under Limited Labeling Resources
	1 Introduction
	2 Problem Formulation
	3 Estimation Methods
	3.1 Simple Random Sampling
	3.2 Stratified Sampling
	3.3 Allocation Methods for Stratified Sampling
	3.4 Comparison of Variances
	3.5 Stratification Methods

	4 Experiments and Results
	4.1 Proportional and Equal Allocation
	4.2 Optimal Allocation
	4.3 Dependence on True Accuracy

	5 Discussions and Conclusions
	References

	Social Stream Classification with Emerging New Labels
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 The Proposed Framework
	4.1 NL-Forest: Training Process
	4.2 NL-Forest: Deployment
	4.3 NL-Forest: Model Update
	4.4 Model Complexity

	5 Experiment
	5.1 Experimental Setup
	5.2 Simulated Data Stream
	5.3 Real Data Stream
	5.4 Sensitivity of Parameters

	6 Conclusion
	References

	Exploiting Anti-monotonicity of Multi-label Evaluation Measures for Inducing Multi-label Rules
	1 Introduction
	2 Preliminaries
	2.1 Multi-label Rule Learning
	2.2 Bipartition Evaluation Functions

	3 Properties of Multi-label Evaluation Measures
	4 Algorithm for Learning Multi-label Head Rules
	5 Evaluation
	6 Related Work
	7 Conclusions
	References

	Modeling Label Interactions in Multi-label Classification: A Multi-structure SVM Perspective
	1 Introduction
	2 A Quick Review of Existing Work
	3 Multi-structure SVM
	4 Dual MSSVM and an Efficient Optimization Algorithm
	5 Experiments
	6 Conclusion
	References

	Sentiment Classification Using Neural Networks with Sentiment Centroids
	1 Introduction
	2 Related Work
	2.1 Sentiment Features Learning
	2.2 Neural Networks for Sentiment Classification

	3 Our Approach
	3.1 Text Sequence Encoder Models
	3.2 Sentiment Centriods Constraint

	4 Experiments
	4.1 Datasets
	4.2 Evaluation Metrics
	4.3 Training Settings
	4.4 Sentence-Level Classification
	4.5 Document-Level Classification
	4.6 The Effect of Sentiment Centroids

	5 Conclusion and Future Work
	References

	Random Pairwise Shapelets Forest
	1 Introduction
	2 Random Pairwise Shapelets Forest
	2.1 Providing More Information by Combination
	2.2 Proposed Algorithm

	3 Decomposed Mean Decrease Impurity
	4 Experiment and Evaluation
	4.1 Experimental Setup
	4.2 Predictive Performance
	4.3 Computational Performance

	5 Case Studies
	5.1 GunPoint
	5.2 ArrowHead

	6 Conclusion
	References

	A Locally Adaptive Multi-Label k-Nearest Neighbor Algorithm
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Paper Organization

	2 Related Work
	3 Methodology
	4 Experiment
	4.1 Experiment Setup
	4.2 Results

	5 Conclusion
	References

	Classification with Reject Option Using Conformal Prediction
	1 Introduction
	2 Conformal Classifiers
	3 Error Probabilities Using Posterior Information
	3.1 Getting Rid of

	4 Experiments
	5 Concluding Remarks
	References

	Target Learning: A Novel Framework to Mine Significant Dependencies for Unlabeled Data
	1 Introduction
	2 Bayesian Network Classifiers
	3 Target Learning
	4 Experimental Study
	5 Conclusion
	6 Code
	References

	Automatic Chinese Reading Comprehension Grading by LSTM with Knowledge Adaptation
	1 Introduction
	2 Model for Automatic Open-Ended Chinese Reading Comprehension Grading
	2.1 Negative Sampling Based Continuous Bag-of-Words Embedding
	2.2 Knowledge Adaptation for Continuous Bag-of-Word Embedding
	2.3 Recurrent Layer
	2.4 Fully-Connected Layer with Softmax Activation

	3 Experiments
	3.1 Data Sets and Preprocessing
	3.2 Baselines
	3.3 Results and Analysis
	3.4 Parameter Sensitivity

	4 Related Work
	5 Conclusions
	References

	Data Mining with Algorithmic Transparency
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 The Reverse Engineering Approximate Learning (REAL) Model
	4.1 Minimum Cost and Complexity Sampling
	4.2 Direct Hypothesis Formation
	4.3 Indirect Hypothesis Formation

	5 Experimental Results
	5.1 Experiments on UCI Datasets

	6 Conclusions and Future Work
	References

	Cost-Sensitive Reference Pair Encoding for Multi-Label Learning
	1 Introduction
	2 Preliminary
	3 Proposed Approach
	4 Active Learning for CSMLC
	5 Experiments
	6 Conclusion
	References

	Fuzzy Integral Optimization with Deep Q-Network for EEG-Based Intention Recognition
	1 Introduction
	2 Preliminaries
	3 Methodology
	3.1 Local Spatio-Temporal Information Extraction
	3.2 Global Temporal Information Extraction
	3.3 Choquet Integral with Deep Q-Network

	4 Experiments
	4.1 Dataset and Model Implementation
	4.2 Compared Algorithms
	4.3 Experimental Result

	5 Conclusion
	References

	Heterogeneous Domain Adaptation Based on Class Decomposition Schemes
	1 Introduction
	2 Problem Formulation
	3 Class Decomposition Schemes and Coding Matrices
	4 Class Code Alignment Algorithm
	4.1 Detailed Description
	4.2 CCA Classification of Target Instances

	5 Experiments
	5.1 Settings of the CCA Algorithm
	5.2 Baseline Classifiers
	5.3 Experiments on the Office Dataset
	5.4 Experiments on the Wikipedia Dataset
	5.5 Experiments on the Multiple Feature Dataset
	5.6 Results and Discussions

	6 Conclusion
	References

	A Deep Neural Spoiler Detection Model Using a Genre-Aware Attention Mechanism
	1 Introduction
	2 Related Work
	2.1 Spoiler Detection
	2.2 Attention Mechanism

	3 Dataset Analysis
	3.1 Dataset Description
	3.2 Spoiler Characteristics Analysis

	4 Our Approach
	4.1 Task Formulation
	4.2 Genre Encoder
	4.3 Sentence Encoder
	4.4 Binary Classifier

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Results

	6 Conclusion
	References

	Robust Semi-Supervised Learning on Multiple Networks with Noise
	1 Introduction
	2 Problem Formulation
	2.1 Graph-Based Semi-supervised Learning
	2.2 Objective Formulation
	2.3 Graph Weights Interpreted

	3 iMUNE Algorithm
	3.1 Complexity Analysis

	4 Evaluation
	4.1 Experiment Setup
	4.2 Parameters
	4.3 Evaluation Results

	5 Conclusion
	References

	-Distance Weighted Support Vector Regression
	1 Introduction
	2 Background
	2.1 Recent Progress in SV Theory

	3 The Proposed -DWSVR
	3.1 The Formulation of -DWSVR
	3.2 The Regression of Medium Problems with Kernel Functions
	3.3 The Regression of Larger Problems

	4 Experiments
	4.1 Experimental Setup
	4.2 Results and Discussion
	4.3 Parameter Effects
	4.4 Time Cost

	References

	Healthcare, BioInformatics and Related Topics (Application)
	Corrosion Prediction on Sewer Networks with Sparse Monitoring Sites: A Case Study
	1 Introduction
	2 Case Study Background
	3 Preliminaries
	3.1 Related Work on Sewer Corrosion
	3.2 Brief Introduction to Gaussian Process

	4 Methodology
	4.1 Gaussian Process Based Prediction Model
	4.2 Factor Estimation
	4.3 Corrosion Prediction

	5 Case Study
	5.1 Evaluation
	5.2 Discussion

	6 Conclusion
	References

	CAPED: Context-Aware Powerlet-Based Energy Disaggregation
	1 Introduction
	2 Related Work
	3 Preliminary
	3.1 Problem Definition
	3.2 Description of a Typical Training Dataset

	4 Proposed Approach: CAPED
	4.1 Learning Powerlets
	4.2 Estimation of Context-Aware Occurrence Probability
	4.3 Context-Aware Signal Decoding

	5 Experiments
	5.1 Experimental Setup
	5.2 Performance Discussion
	5.3 Parameter Study

	6 Conclusion
	References

	Rolling Forecasting Forward by Boosting Heterogeneous Kernels
	1 Introduction
	2 Background: Network Traffic and Device Configuration
	3 Related Work
	4 Solution
	4.1 Overall Process
	4.2 Kernel Design

	5 Experiments
	5.1 Data
	5.2 Setup
	5.3 Comparison Results
	5.4 Contribution of Kernels

	6 Conclusion
	References

	IDLP: A Novel Label Propagation Framework for Disease Gene Prioritization
	1 Introduction
	2 Materials and Methods
	2.1 Materials
	2.2 Notations
	2.3 Dual Label Propagation on Heterogeneous Network
	2.4 Improved Dual Label Propagation on Heterogeneous Network

	3 Results
	3.1 Baselines
	3.2 Experimental Settings
	3.3 Evaluation
	3.4 Accuracy Evaluation

	4 Robustness Evaluation of IDLP
	5 Conclusion
	References

	Deep Learning for Forecasting Stock Returns in the Cross-Section
	Abstract
	1 Introduction
	2 Related Works
	3 Data and Methodology
	3.1 Dataset for MSCI Japan Universe
	3.2 Problem Definition
	3.3 Training and Prediction
	3.4 Performance Measures
	3.5 Compared Models

	4 Experimental Results
	4.1 Shallow Versus Deep Neural Networks
	4.2 Comparison with Support Vector Regression and Random Forests
	4.3 Ensemble
	4.4 Long–Short Portfolio Strategy

	5 Conclusions
	References

	Vine Copula-Based Asymmetry and Tail Dependence Modeling
	1 Introduction
	2 Preliminaries
	2.1 Vine Copula
	2.2 Tail Dependencies

	3 Our Weighted Partial Regular Vine Model
	3.1 Partial Regular Vine Construction
	3.2 Vine Structure Selection
	3.3 Bivariate Copula Selection
	3.4 Marginal Distribution Specification and Parameter Estimation

	4 Case Study
	4.1 Data and Marginal Distribution Specification
	4.2 Regular Vine Copula Structure Specification and Tail Dependence Analysis
	4.3 Out-of-Sample Performance Analysis

	5 Conclusion and Future Work
	References

	Detecting Forged Alcohol Non-invasively Through Vibrational Spectroscopy and Machine Learning
	1 Introduction
	2 Background
	2.1 Spectroscopy
	2.2 Classification

	3 Data
	4 Experimental Setup
	5 Results
	5.1 Leave-one-bottle-out Cross Validationa
	5.2 Classifying the Bottleb
	5.3 PCA Transformsc

	6 Conclusions
	References

	Research and Application of Mapping Relationship Based on Learning Attention Mechanism
	1 Introduction
	2 Problem Definition
	2.1 Definition
	2.2 Evaluation Method
	2.3 Problem Definition

	3 Definition of Model
	3.1 Encoder
	3.2 Decoder
	3.3 Attention Mechanism

	4 Experiments and Results
	4.1 Datasets
	4.2 Results and Analysis

	5 Conclusions and Future Work
	References

	Human Identification via Unsupervised Feature Learning from UWB Radar Data
	1 Introduction
	2 Related Work
	3 Characteristics of the UWB Data
	4 Unsupervised Feature Learning and Classification for Human Identification
	4.1 Convolutional Extraction
	4.2 Pre-Processing
	4.3 Unsupervised Feature Learning
	4.4 Feature Transformation
	4.5 Classification

	5 Experiments
	5.1 Data Collection and Pre-Processing
	5.2 Effect of Whitening and Patch Size
	5.3 Effect of Number of Feature Bases
	5.4 Final Classification Results

	6 Conclusion and Future Work
	References

	Prescriptive Analytics Through Constrained Bayesian Optimization
	1 Introduction
	2 Framework
	2.1 Prescriptive Analytics
	2.2 Computing c
	2.3 Optimization

	3 Experiments
	3.1 Constrained Bayesian Optimization vs Genetic Algorithm
	3.2 Iris Dataset
	3.3 Application to Policy Design for Better Community Health

	4 Conclusion
	References

	Neighborhood Constraint Matrix Completion for Drug-Target Interaction Prediction
	1 Introduction
	2 Materials and Method
	2.1 Materials
	2.2 Notation and Problem Description
	2.3 Neighborhood Constraint Matrix Completion

	3 Results and Discussion
	3.1 Comparison Methods
	3.2 Experimental Settings
	3.3 Performance Results

	4 Conclusion
	References

	Detecting Hypopnea and Obstructive Apnea Events Using Convolutional Neural Networks on Wavelet Spectrograms of Nasal Airflow
	1 Introduction
	2 Related Work
	3 Data
	3.1 Data Preprocessing and Preparation

	4 Method
	4.1 Signal Normalization
	4.2 CNN Design
	4.3 1-D CNN: Nasal Signal
	4.4 2-D CNN: Nasal Signal Spectrogram

	5 Results and Discussion
	6 Conclusion
	References

	Deep Ensemble Classifiers and Peer Effects Analysis for Churn Forecasting in Retail Banking
	1 Introduction
	2 Related Work
	3 Data
	3.1 Feature Engineering

	4 Methods
	4.1 Deep Convolutional Neural Networks
	4.2 Deep Ensemble Classifier

	5 Results
	6 Conclusion
	References

	GBTM: Graph Based Troubleshooting Method for Handling Customer Cases Using Storage System Log
	1 Introduction
	2 Background and Dataset
	2.1 Event Message System (EMS) Logs
	2.2 Data Filtering
	2.3 Graph Construction from EMS Log

	3 Troubleshooting Methodology
	3.1 GBST Algorithm
	3.2 Clustering
	3.3 Set Expansion
	3.4 Creation of NEPCS and AEPCS
	3.5 Ranking Modules and PCS Construction

	4 Experimental Setup
	4.1 Evaluation Procedure
	4.2 Evaluation Metrics
	4.3 Baseline Models

	5 Evaluation
	5.1 Direct Validation
	5.2 Indirect Validation
	5.3 Comparative Study Across Metrics
	5.4 Stability of GBTM

	6 Conclusion
	References

	Fusion of Modern and Tradition: A Multi-stage-Based Deep Network Approach for Head Detection
	1 Introduction
	2 Deep Motion Information Network
	2.1 Motion Image and Its Representation
	2.2 Deep Motion Proposals Network
	2.3 Coarse-Fine Multi-level CNN for Head Detection

	3 Results and Discussion
	4 Conclusion
	References

	Learning Treatment Regimens from Electronic Medical Records
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Data Collection and Preprocessing
	3.2 Data Representation and Patient Clustering
	3.3 Treatment Period Identification
	3.4 Learning Group Treatment Regimens

	4 Experimental Evaluation
	4.1 Experimental Design
	4.2 Results
	4.3 Evaluation

	5 Discussion
	6 Conclusion
	References

	Human, Behaviour and Interactions (Application)
	Mining POI Alias from Microblog Conversations
	1 Introduction
	2 Related Works
	3 Selecting Toponym Candidates
	4 Finding Compatible Toponyms
	4.1 Compatibility Measures
	4.2 Tuning Factor Weights

	5 Experimental Results
	5.1 Dataset and Evaluation Metric
	5.2 Results and Discussion

	6 Conclusion
	References

	DyPerm: Maximizing Permanence for Dynamic Community Detection
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 The DyPerm Algorithm

	4 Experimental Results
	4.1 Datasets
	4.2 Baseline Methods
	4.3 Comparative Evaluation
	4.4 Run-Time Analysis

	5 Conclusion
	References

	Mining User Behavioral Rules from Smartphone Data Through Association Analysis
	1 Introduction
	2 Association Rules: A Background
	3 Redundancy in Association Rules
	4 Our Approach
	4.1 Association Generation Tree (AGT)

	5 Experiments
	5.1 Dataset
	5.2 Evaluation Results

	6 Conclusion and Future Work
	References

	A Context-Aware Evaluation Method of Driving Behavior
	1 Introduction
	2 Related Work
	3 Preliminary
	3.1 Problem Description
	3.2 Driving Data and Driving Events
	3.3 Driving Contexts

	4 Analysis of Driving Contexts
	5 Evaluation Method
	5.1 Fundamental Idea
	5.2 Weighting Event in Driving Context
	5.3 Evaluating Driving Performance

	6 System Design
	6.1 Pre-Processing
	6.2 Evaluation

	7 Experimental Study
	7.1 Effectiveness of the Normalizing Method
	7.2 Effectiveness of the Evaluation Method

	8 Conclusion
	References

	Measurement of Users' Experience on Online Platforms from Their Behavior Logs
	1 Introduction
	2 Related Work and Defining Experience Value
	3 Framework
	4 Learning Experience Values
	4.1 Rule-Based Method
	4.2 Value Iteration Method

	5 Experimentation
	6 Results and Discussion
	7 Conclusion
	References

	Mining Human Periodic Behaviors Using Mobility Intention and Relative Entropy
	1 Introduction
	2 Related Work
	2.1 Human Periodic Behavior Mining
	2.2 Periodicity Detection

	3 Mobility Intention Based Period Behaviors Mining
	3.1 Mobility Intention Extraction
	3.2 Period Identification

	4 Experiment and Analysis
	4.1 Periodicity Detection on Synthetic Time Series Data
	4.2 Performance Evaluation Using Real Dataset
	4.3 Location Prediction on Real Datasets

	5 Conclusions
	References

	Context-Uncertainty-Aware Chatbot Action Selection via Parameterized Auxiliary Reinforcement Learning
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Value-Based DRL
	3.2 Policy-Based DRL

	4 User Simulator
	4.1 Data Preparation
	4.2 Dialogue Simulation

	5 Proposed Model
	5.1 Parameterized A3C
	5.2 Auxiliary Tasks
	5.3 PA4C Model

	6 Experiments
	6.1 Baseline Models and Hyperparameters
	6.2 Results

	7 Conclusion
	References

	Learning Product Embedding from Multi-relational User Behavior
	1 Introduction
	2 Related Work
	2.1 Product Information Network
	2.2 Network Embedding

	3 Multi-relational Product Network Embedding
	3.1 Problem Definition
	3.2 Learning Embedding
	3.3 Model Optimization
	3.4 Algorithm Complexity Analysis

	4 Experiments
	4.1 Data Sets and Experimental Setup
	4.2 Visualizations
	4.3 Label Classification
	4.4 Parameter Sensitivity and Scalability

	5 Conclusions
	References

	Vulnerability Assessment of Metro Systems Based on Dynamic Network Structure
	1 Introduction
	2 Related Work
	3 Vulnerability Assessment Framework
	3.1 Attack Strategies
	3.2 Subgrpah Centrality
	3.3 Vulnerability Metrics

	4 Experimental Analysis and Discussion
	4.1 Data Preprocessing
	4.2 Topological Properties of Metro Network
	4.3 Vulnerability Analysis and Travel Patterns

	5 Conclusion
	References

	Visual Relation Extraction via Multi-modal Translation Embedding Based Model
	1 Introduction
	2 Related Work
	2.1 Knowledge Graph Embedding
	2.2 Visual Relation Detection

	3 Method
	4 Objects Detection Module
	5 Visual Phrase Attention Module
	6 Translation Embedding Module
	7 Experiments and Analysis
	7.1 Datasets and Metrics
	7.2 Comparison with State-of-the-Art
	7.3 Zero-Shot Learning

	8 Conclusion
	References

	Anomaly Detection and Analytics
	Sub-trajectory- and Trajectory-Neighbor-based Outlier Detection over Trajectory Streams
	1 Introduction
	2 Overview
	2.1 Preliminary
	2.2 Problem Formulation

	3 Methodology
	3.1 Feature Extraction
	3.2 Distance Function

	4 Detection Framework
	4.1 The Basic Framework
	4.2 The Optimized Framework

	5 Experiments
	5.1 Effectiveness Evaluation
	5.2 Efficiency Evaluation

	6 Conclusion
	References

	An Unsupervised Boosting Strategy for Outlier Detection Ensembles
	1 Introduction
	2 Related Work
	3 Boosting for Ensemble Selection
	3.1 Construction of the Target Vector
	3.2 Weights and Ensemble Diversity
	3.3 Boosting Procedure

	4 Experiments and Evaluation
	4.1 Datasets
	4.2 Ensemble Members
	4.3 Competitors and Settings
	4.4 Results

	5 Conclusion
	References

	DeepAD: A Generic Framework Based on Deep Learning for Time Series Anomaly Detection
	1 Introduction
	2 Related Work
	3 DeepAD Framework
	3.1 Time Series Forecasting (TSF)
	3.2 Merging Predictions (MP)
	3.3 Anomaly Detector (AD)

	4 Evaluation
	4.1 Dataset
	4.2 Evaluation Metrics
	4.3 Results

	5 Conclusion
	References

	Anomaly Detection Technique Robust to Units and Scales of Measurement
	1 Introduction
	2 Preliminaries and Related Work
	3 New Method Robust to Units and Scales of Measurement
	4 Empirical Evaluation
	4.1 Synthetic Datasets
	4.2 Benchmark Datasets

	5 Concluding Remarks
	References

	Automated Explanations of User-Expected Trends for Aggregate Queries
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 Prospective Trend Problem

	4 UTE Architecture
	4.1 Naive Splitter
	4.2 Basic Merger (BM)
	4.3 UTE Splitting Approaches
	4.4 XTrend Transformation
	4.5 Xtrend Merging

	5 Experiments
	5.1 Datasets
	5.2 Comparing Splitting Algorithms
	5.3 Comparing Merging Algorithms

	6 Conclusions
	References

	Social Spammer Detection: A Multi-Relational Embedding Approach
	1 Introduction
	2 Preliminaries
	2.1 Formulating Multi-Relational Spammer Detection
	2.2 Feature Design from Multi-Relational Data

	3 Methodology
	3.1 Multi-Relational Embedding
	3.2 Parameter Estimation

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Performance Comparison

	5 Related Work
	6 Conclusions
	References

	Opinion Mining and Sentiment Analysis
	Learning to Rank Items of Minimal Reviews Using Weak Supervision
	1 Introduction
	2 Literature Review
	3 L2RI: Learning to Rank Items with Weak Supervision
	3.1 Learning to Rank Items Model
	3.2 A Rank-Oriented Loss Function
	3.3 Generating Ranking Scores for Weak Supervision
	3.4 The Features

	4 Experiments
	4.1 Experiment Setup
	4.2 Results

	5 Conclusion and Future Work
	References

	Multimodal Mixture Density Boosting Network for Personality Mining
	1 Introduction
	2 Preliminary
	3 Methodology
	3.1 DCA Feature Fusion Layer
	3.2 Mixture Density Network
	3.3 Dynamic Cascade Boosting Network

	4 Experiment
	4.1 Datasets
	4.2 Features Extraction
	4.3 Evaluation
	4.4 Results

	5 Conclusions
	References

	Identifying Singleton Spammers via Spammer Group Detection
	1 Introduction
	2 Related Work
	3 The Proposed Approach: SSGD
	3.1 Inferring Hidden Reviewer-Product Associations
	3.2 Finding and Ranking Spammer Groups

	4 Experiment Setup
	5 Results and Discussion
	5.1 Recall and Precision for Singleton Spammer Detection
	5.2 Qualitative Analysis of Detected Spammer Groups

	6 Conclusions
	References

	Adaptive Attention Network for Review Sentiment Classification
	1 Introduction
	2 Related Work
	3 Adaptive Attention Network
	3.1 Two-Layer AAN Architecture
	3.2 AAN for Review Modeling

	4 Experiments
	4.1 Comparison with Baselines
	4.2 Impact of User and Product Embeddings
	4.3 Impact of Adaptive Attention Mechanism

	5 Conclusion
	References

	Cross-Domain Sentiment Classification via a Bifurcated-LSTM
	1 Introduction
	2 Related Works
	2.1 Cross-Domain Sentiment Classification
	2.2 Multi-task Learning

	3 Recurrent Neural Network Models for Text Classification
	3.1 Long Short-Term Memory
	3.2 Text Classification with LSTM

	4 Bifurcated-LSTM for Cross-Domain Sentiment Classification
	4.1 Dataset Augmentation
	4.2 Bifurcated-LSTM
	4.3 Orthogonality Constraints
	4.4 Training and Testing

	5 Experiments Setting
	5.1 Dataset
	5.2 Dataset Augmentation
	5.3 Hyperparameters

	6 Performance Evaluation of Bifurcated-LSTM
	6.1 Performance Evaluation
	6.2 Performance Comparison

	7 Conclusion and Future Work
	References

	Author Index

