
Meta-learning Enhanced Neural ODE for Citywide
Next POI Recommendation

Haining Tan1,2 Di Yao1,2 Tao Huang1,2 Baoli Wang1,2 Quanliang Jing1,2 Jingping Bi1,2
1 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

2University of Chinese Academy of Sciences, Beijing, China
{tanhaining, yaodi, huangtao01, wangbaoli, jingquanliang, bjp}@ict.ac.cn

Abstract—Recommending citywide POIs where users would
visit in the next future benefits many location-based businesses
and individuals. To train a decent recommendation model,
adequate historical data is usually a prerequisite. However,
historical check-ins are usually distributed unevenly, which leads
to many cities suffering from data scarcity. To make matters
worse, transferring knowledge from data sufficient cities is
challenging due to the varying distribution of POIs and city
structures. Most of existing next POI recommendation methods
assume that the training data is adequate and can not solve
these problems. In this paper, we propose a novel meta-learning
enhanced neural ordinary differential equation (ODE) method,
namely METAODE, which models city-invariant information and
city-specified information separately to achieve accurate citywide
next POI recommendation. For transferring knowledge from data
sufficient cities, METAODE learns city-invariant information
including the representation of POIs categories and user groups
to extract user preference. Basing on that, METAODE employs a
GRU-ODE-Bayes model for city-specified information modeling.
It can not only capture the sequential relationships within
the historical check-ins but also model the irregular-sampled
timestamp in the continuous timeline. Moreover, METAODE
leverages meta-learning mechanism to optimize the parameters
on various data sufficient cities and train a well-generalized
initialization, which can be effectively adapted to data insuffi-
cient cities to enhance recommendation performance. Extensive
experiments on real-world datasets demonstrate the effectiveness
of METAODE. Comparing with the state-of-the-art baselines,
METAODE achieves 6.21% and 14.77% improvements on HR
and NDCG, respectively.

Index Terms—Meta-learning, Neural ODEs, Memory Network,
Recommender Systems, Next POI Recommendation.

I. INTRODUCTION

Next POI recommendation, which recommends locations
with high visiting probabilities for users at a specific future
timestamp, has been considered as a critical task for many
location-based social networks (LBSNs), such as Foursquare,
Yelp and etc. In practice, a branch of well-trained recom-
mendation models for various cities have been proved to be
vital for accurately evaluating how likely a user would visit a
POI in the near future [7], [10], [15]. Training these citywide
recommendation models requires a slew of historical data
that covers most of POIs in the target cities. Nevertheless,
as illustrated in Figure 1, the historical data is unevenly
distributed in geographical space so that many cities have
no sufficient data for model training. Thus, it is virtually
impossible to obtain decent models for these data insufficient
cities only utilizing the historical data of themselves. Citywide

Fig. 1. Challenges in citywide next POI recommendation.

next POI recommendation, which transfers knowledge from
data sufficient source cities to improve the recommendation
performance of insufficient ones, is designed to solve this
problem and can be widely used in many circumstances.

However, as shown in Figure 1, citywide POI recommen-
dation is not trivial due to the following three challenges:
(1) Due to the limited training data, user preferences in the
data insufficient cities are difficult to be captured. As proved
in many works [13], [35], this factor is extremely important
to recommend next POIs precisely. (2) Human mobilities
are complex, while the obversions (check-in records) of a
specific user are sparse and irregular in continuous time.
The recommendation method should model this irregularity to
generate proper POIs at a specified time. This situation could
be even worse in data insufficient cities. (3) Urban structures
and POIs distributions are varying in different cities. Models
trained on data sufficient cities cannot directly adapt to data
insufficient ones.

Despite that a great deal of works have been conducted for
POI recommendation, none of them can handle all the three
challenges systematically. To solve the first challenge, a lot of
time-aware next POI recommendation methods are proposed.
Continuous time information is either cut into discrete time
bins [18] or discounted the influence of time intervals linearly
by point processes [5] for recommendation. We argue that
the time information is better to be naturally modeled within
the recommendation model, yet these methods fail in that
way. For the last two challenges, although many out-of-town
POI recommendation methods, such as JIM [35] and CTLM
[13], are proposed to recommend POIs in new target city
for previously served users, the problem definitions in their
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works are quite different with ours. Moreover, there exist some
spatial transfer learning methods [33] that are proposed to
predict macrography city patterns for data insufficient city,
such as the traffic flow. Nevertheless, in citywide next POI
recommendation, we aim to model the micrography pattern of
users and these methods would fail in this task.

With the emergence of meta-learning [8] and neural ODEs
[4], these challenges are promising to be solved systematically.
By modeling invariant relationships across different cities,
meta-learning methods are suitable for transferring knowl-
edge from data sufficient cities and solving the data sparsity
problem. Moreover, neural ODEs which naturally model the
irregular-sampled time series can be used to capture the
complex mobility patterns of users. In this paper, we propose
a novel meta-learning enhanced neural ODE method, namely
METAODE, for citywide next POI recommendation. It has
two attractive characters: (1) Robust to data insufficient cities.
METAODE borrows city-invariant knowledge from multiple
cities via the common POI categories and user groups to
improve the recommendation performance of data insufficient
cities. (2) Time-specified recommendation results. The con-
tinuous temporal information of user check-ins is naturally
modeled in METAODE. Taking the historical data of a user
and a future timestamp as inputs, METAODE generates POIs
that are highly related to the specified timestamp. In order to
have the up-mentioned characters, METAODE models city-
invariant information and city-specified information with two
parallel processes and optimizes the parameters with meta
training.

To transfer knowledge from the data sufficient cities,
METAODE shares city-invariant information, i.e. categories of
POIs and user groups, spanning across all cities to model the
user preferences. Instead of employing embedding vectors for
users [6], METAODE utilizes a memory network and learns
representations of POI categories and user groups from the
historical data. For a specific user, METAODE first utilizes a
weighted sum of category embeddings that the user previously
visited, and then conducts an attention-based query on the user
group representations to obtain the final user preference vector.

For modeling the city-specified information, METAODE
employs GeoHash to initialize the POI embeddings of the
target city and adopts GRU-ODE-Bayes [1] to capture the
complex human mobilities. Building upon a continuous-time
version of GRU, METAODE not only captures the sequential
influence of user check-in but also embeds various time
intervals in the continuous hidden states for recommendation.
Moreover, by combining the Bayesian updating mechanism
upon the representations, METAODE can better integrate the
current information with the previously processed data and
further enhance the power of these representations. After that,
the recommended POIs results can be generated by combining
the output of GRU-ODE-Bayes and the user preference vector.

To learn the parameters in METAODE, a meta-learning
paradigm is conducted for model optimization. Specifically,
METAODE treats POI recommendation in different cities
as different meta tasks and learns an intermediate model

that performs not too bad on all cities. For the target city,
METAODE fine-tunes the intermediate model and yields the
recommendation results. In this way, METAODE can achieve
robust performance on data insufficient cities even though the
training data is limited.

The main contributions of this paper can be summarized as
follows.
• To the best of our knowledge, this is the first work that

introduces Neural Ordinary Equation to POI recommenda-
tion. The intrinsic characters of neural ODEs are perfectly
suitable to model the continuous time intervals of check-in
data.

• We propose METAODE, a meta-learning enhanced model
for citywide next POI recommendation. It first learns
city-specified knowledge and city-invariant knowledge with
GRU-ODE-Bayes and memory network respectively. Then,
the city-invariant knowledge is transferred to enhance the
recommendation performance of data insufficient target
cities.

• We conduct extensive experiments on real-world datasets.
The results show the superiority of METAODE comparing
with all baselines.

II. RELATED WORK

In this section, we summarize the related works of
METAODE. These works can be classified into three cate-
gories: POI recommendation, neural ODEs and meta-learning.

A. POI recommendation

Existing POI recommendation methods related to this paper
can be grouped into two subcategories: next POI recommen-
dation methods and cross-city POI recommendation methods.

For next POI recommendation, a slew of studies [29], [30],
[36]–[38] model the sequential influence in historical data
and achieving good performance. Additionally, other mobility
prediction methods [6], [18] can also be adopted to solve the
next POI recommendation problem. Nevertheless, these works
are designed for recommend POIs in one specific area and hard
to transfer knowledge from other cities/areas.

Recently, many cross-city POI recommendation methods
[13], [16], [35] have been proposed to recommend POIs when
users visit another city. However, the problem setting of cross-
city POI recommendation is quite different from our problem
and these methods cannot be used in citywide next POI
recommendation.

B. Neural Ordinary Differential Equation

Neural ODE(Neural Ordinary Differential Equation) is re-
cently proposed by [4] which outperforms other works on
modeling real-world sporadically time series, e.g. standard
RNN [3], [17] and RNN-decay [2], [3], [19], [22]. Neural ODE
is a continuous version of neural networks that overcomes the
limits imposed by discrete-time recurrent neural networks. It
proposes a natural way of generating irregularly sampled data
coupled with a variational auto-encoder architecture [11]. [26]
lately propose a convincing new VAE architecture that uses
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a Neural-ODE architecture for both encoding and decoding
the data. Besides, [1] introduce a continuous-time version of
the Gated Recurrent Unit, GRU-ODE, building upon Neural
ODEs. Furthermore, [1] leverages a Bayesian update network,
GRU-bayes, to process sporadic series, which allows feeding
sporadic observations into a continuous ODE dynamics de-
scribing the evolution of the probability distribution of the
data. As we all know, check-in activities of users in LBSNs
can be seen as an irregularly-sampled time series. Therefore,
due to the great advantages of neural ODE in modeling time
series, in this study, we use neural ODE as a building block
for our citywide next POI recommendation method.

C. Meta-learning

Meta-learning, allowing machines to learn new skills or
adapt to new environments rapidly with only a small number
of training samples [8], has demonstrated success in both
supervised learning and reinforcement learning settings. There
are four common approaches [34]: 1) use a recurrent neural
network equipped with either external or internal memory
storing and querying meta-knowledge [20], [21]; 2) learn a
meta-optimizer which can quickly optimize the model param-
eters [14], [23]; 3) learn an effective distance metric between
examples [27], [28]; 4) learn an appropriate initialization from
which the model parameters can be updated within a few
gradient steps [8], [12], [33]. Nevertheless, only a few attempts
have been made on space. [33] leverage the similarity of
regions between a source city and a target city to construct
the similarity regularization for knowledge transfer and utilize
a meta-learning paradigm to learn a well-generalized initial-
ization of the spatial-temporal network for traffic prediction
that falls into the fourth aforementioned category.

However, these methods work on multimodal features in-
stead of spatial-temporal POI sequences we focus on. There-
fore, they cannot be applied directly to solve the problem.
Compared with these methods, METAODE, falls into the
fourth aforementioned category, explicitly trains the param-
eters for citywide next POI recommendation on the given
task distribution, allowing for extremely efficient adaptation
for problems such as a target task learning and rapid adaption
for spatio-temporal learning.

III. PRELIMINARIES

In this section, we first summarize the notations and define
the citywide POI recommendation problem. Based on the
notations, we overview the proposed method METAODE.

A. Problem Formulation

POI in LBSN is defined as a location attached with its
category information i.e. v = (l, c). Location l is usually
represented with the GPS coordinates l = (x, y). Specifically,
a check-in record can be organized into a triplet ru = (u, v, t)
which indicates user u visiting POI v at time point t. For
a specific user, its historical check-ins form a sequence, i.e.
Tu = [r1, r2, ..., rK ].

Fig. 2. The architecture of METAODE.

Given the historical dataset of P cities D = {Dp|p ∈
1, 2, ..., P}, the citywide next POI recommendation problem
aims to predict POIs that users most likely to visit in the near
future. For a specific user u in city p, denoting V = v1, ..., vD
as the set of all POIs in p, the citywide next POI recommen-
dation problem can be formally defined as follows:

Definition 1: Citywide Next POI Recommendation. The
goal of citywide next POI recommendation is to predict the
most likely POI v̂ that u will visit at a specific time point t̂ =
tk +∆t by utilizing all information in D. i.e.,

v̂ = arg max
v

P(v ∈ V; t̂, u, Tu,D,Θ)

where Tu = [r1, r2, ..., rK ] represents the historical check-
ins and Θ denotes all parameters in the recommendation
model.

B. Overview of METAODE

METAODE is a meta-learning framework. It utilizes the
recommendation tasks in different cities for meta training
and enables the recommendation model to borrow knowledge
from multiple data sufficient cities to address the data sparsity
problem. The overall architecture is illustrated in Figure 2.

For the convenience of knowledge transfer, METAODE
separates the recommendation model into two parallel pro-
cedures, i.e. USER-MEM for user preference modeling and
ST-ODE for spatial-temporal sequence modeling. In USER-
MEM, the city-invariant information, such as POI categories
and user groups, are employed to represent the preference of
the specific user u. In ST-ODE, the city-specified information
that contains POIs, locations and continuous timestamps are
captured by a GRU-ODE-Bayes model to generate the context
representation at t̂. Then, METAODE combines the outputs of
USER-MEM and ST-ODE to obtain the final recommended
POIs.

In parameter learning, both USER-MEM and ST-ODE are
jointly optimized in a meta-learning framework. In meta train-
ing, for different source cities, METAODE utilizes different
POI embeddings in ST-ODE to model the city-specified
information, and share one USER-MEM to learn the city-
invariant information. In testing, we fine-tune the parameters
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TABLE I
NOTATIONS USED IN THIS PAPER

Notations Descriptions
u, v, l, t User, POI, location and check-in timestamp.
U ,V User set and POIs set.

ru = (u, v, t) A record indicates u visit v at t.
Tu Historical check-ins of user u.
Dp Historical data of users in city p.
D Historical data of all given cities.
hk Hidden status of user u at tk.
M Embedding matrix of USER-MEM.
d Embedding dimension.
Θ All parameters in METAODE.

in METAODE on the historical data of p to adopt METAODE
to the target city. With this architecture, the city-invariant
information lying in data sufficient cities can be automatically
transferred to enhance the recommendation performances of
data insufficient cities.

IV. METHODOLOGY

METAODE consists of three key modules, i.e. USER-MEM,
ST-ODE, and meta-learning enhanced models optimization.
Next, we specify the details of these modules, respectively.
A. USER-MEM: Memory Network for User Preference Mod-
eling

For transferring knowledge from data sufficient cities to
insufficient ones, city-invariant information should be used to
bridge the transformation. In this paper, we consider two kinds
of city-invariant information, i.e. categories of POIs and user
groups, and integrate them in USER-MEM for modeling the
user preference. The structure of USER-MEM is illustrated
in Figure 3. Taking the historical check-ins of a user u as
input, USER-MEM first embeds the category information of
previously visited POIs into vectors uc. Then, it employs an
attentive memory network to model the user groups and yield
the final user preference vector u of u. We will specify the
generation of these two vectors below.

Generation of uc. Assuming that there are N categories
of POIs and S user groups spanning across all cities, we
denote the embedding vectors of them as Ec ∈ RN×dc and
M ∈ RS×dm , respectively. Given the historical check-ins
Tu = [r1, r2, ..., rK ] of user u, USER-MEM extracts the cat-
egories of POIs and generates the previously visited category
sequence [c1, c2, ..., cK ]. By leveraging a lookup operation on
Ec, we can obtain the category embeddings [e1, e2, ..., eK] of
them and generate uc as follows:

uc =
K∑

k=1

wc
k · ek (1)

where wc
k is the weight of each category and subject to∑K

k=1 wk = 1. After that, the user category embedding is
fed to a memory network for the next processing step.

Generation of u. Taking uc as the input, USER-MEM
employs a memory network for generating the representation

Fig. 3. The architecture of the USER-MEM.

of user groups of u. As illustrated in Figure 3, the matrix
M ∈ RS×d, represents the embeddings of all user groups
shared in all cities. Leveraging uc as the query vector and
M as the context matrix, we adopt an attention mechanism to
generate the user group representation ug as follows:

wg
i = softmax(uT

c mi)

u =
∑

i∈1...S

wg
imi

(2)

where mi denotes the i-th slot in the memory M; wg
i denotes

the weight which represents the extent of u similar with the i-
th user group. In this way, the preference of the specified user
u is transformed to the representation of different user groups.
Intuitively, USER-MEM is robust to model users having few
check-ins and convenience to knowledge transfer.

Objective function of USER-MEM. For optimizing E, M
and other weights in METAODE, we propose a pair-wise
optimization mechanism. Specifically, we first adopt a scoring
layer for any user-category pair to calculate the visiting score,
and then employ negative sampling to design the pair-wise
objective function. Given a pair < u, c >, we calculate the
joint embedding between u and the category embedding e
through element-wise dot. i.e. u<u,c> = u�e. Then, u<u,c>

is fed into a fully connected layer to obtain a score:

s<u,c> = f(u<u,c>) (3)

where f represents the fully connected layer that transforms
the vector into a numeric score.

For the given historical check-ins of user u, we
extract its previously visited user-POI pairs ∆p =
< u, c1 >, ... < u, cK > from Tu and treat them as pos-
itive pairs. Accordingly, we sample a set of categories
that u have not visited as the negative samples ∆n =
< u, c′1 >, ... < u, c′K >. Based on the Bayesian personal-
ized ranking (BPR) [24], s<u,c′> is supposed to less than
s<u,c>. Therefore, the objective function of USER-MEM can
be formulated as:

Lmem(u) =
∑

<u,c>∈∆p

∑
<u,c′>∈∆n

max(0, s<u,c′>−s<u,c>+η)

(4)
where η is the decision margin that separates positive and
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Fig. 4. The architecture of the ST-ODE.

negative examples. By this pair-wise optimization scheme,
we can sample negative samples depending on the category
distribution of different cities.

B. ST-ODE: Spatial-Temporal Neural Ordinary Differential
Equations

Besides of the city-invariant information modeled by USER-
MEM, city-specific information only related to one specific
city is also critical for our task, such as POIs and location
distributions. In this subsection, we propose ST-ODE to
capture these pieces of information by a neural ODE model
[1]. ST-ODE systemically models the influences of three
kinds of city-specified information, i.e. POIs, geographical
locations, and check-in time. Given historical check-ins of u at
target city p, i.e. Tu = [r1, r2, ..., rK ], ST-ODE first embeds
each record into a vector and employs GRU-ODE-Bayes to
model the spatial-temporal influence. Next, we first describe
the generation of check-in record embeddings. After that, the
architecture of ST-ODE is specified.

Record embedding. In ST-ODE, we firstly utilize an
embedding layer to obtain the record embeddings. Taking the
record ruk = (u, vk, tk) as input, we only focus on three
features [ck, lk, tk] which represent the category of POI vk,
the GPS coordinates of vk and the check-in timestamp tk
respectively to generate the record embedding.

• For the category embedding, we look up the category
embedding matrix Ec (specified in Section IV-A) to generate
the embedding of ck.

• For the POI location embedding, we embed all POIs into
vectors by a city-specific embedding matrix V ∈ RD×dl ,
where D is the total number of POIs in p. This matrix is
initialized with the GeoHash encoding of the GPS coordi-
nates of POIs.

• For timestamp embedding, we discretize one week into
168 slots(7 days × 24 hours) following [32] and learn
an embedding matrix T ∈ R168×dl . Thus, for any input
timestamp tk, we can map it into a dt-dimensional vector.

By concatenating these three embeddings, we obtain an
initial d-dimensional vector rk for record ruk , where d =

dc + dl + dt. After embedding all records in Tu, we feed
them into a GRU-ODE-Bayes model for next processing.

GRU-ODE-Bayes for spatial-temporal influence model-
ing. Enlightened by [1], we use GRU-ODE-Bayes to exploit
the spatial-temporal preference of users for citywide POI
recommendation. Here, we employ GRU-ODE to control the
influence of historical records and conduct a Bayesian update
operation in GRU-Bayes to control the influence of the current
observed record. In this way, for each input record, we first
utilize GRU-ODE to generate the hidden states propagated
from the last check-in record and then switch the ST-ODE
from propagation to update the hidden states incorporating
with the current record.

As illustrated in Figure 4, for the coming check-in record
rk, we firstly employ GRU-ODE to propagate the previous
hidden state hk−1 from tk−1 to tk as follows:

h
′

k = GRU-ODE(hk−1, tk−1, tk) (5)

Then, we utilize GRU-Bayes to process the sporadically in-
coming check-in record rk to update the hidden representa-
tions of users which can be formulated as:

hk = GRU-Bayes(h
′

k, rk) (6)

here h
′

k and hk denote the hidden representation before and
after the update according to the check-in record rk.

Objective function of ST-ODE. Two losses are employed
to optimize the parameters in ST-ODE. The first one is Lode

which drives from GRU-ODE before updating. It represents
the negative log-likelihood of the perviously observed check-
ins. For a check-in record rk, Lode is defined as follows:

ppre = softmax(f(h
′

k,j))

Lode(rk) = −
D∑
i=1

vk[i] · log ppre[i]
(7)

where f is a fully connected layer to transform h
′

k,j into a D-
dimensional vector; ppre represents the probability distribution
on all POIs in city p; vk ∈ RD×1 is an one-hot embedding of
vk.

For the second loss, denoting the prior probability of cur-
rently observed POI vk as pobs, we first compute the analogue
of the Bayesian update:

ppost ∝ ppre · pobs (8)

Let ppost denote the predicted probability distribution(from
hk) after applying GRU-Bayes with rk. The Lbayes(rk) can
be defined as:

Lbayes(rk) = DKL(pbayes||ppost) (9)

Intuitively, this loss regularizes the difference between the pre-
update distribution and the post-update distribution not too
huge. Finally, for a user has K records, the total loss of the
ST-ODE can be obtained by adding both losses with a balance
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parameter λ:

Lst(u) =
K∑

k=1

Lode(rk) + λLbayes(rk) (10)

C. Meta-learning Enhanced Model Optimization
For transferring the knowledge from data sufficient cities

and enhancing the recommendation performance on insuffi-
cient ones, in this section, we propose to use the meta-learning
mechanism to optimize the parameters in METAODE. Without
losing the generality, we choose one city p as the target city,
and other P −1 cities denoted with S can be treated as source
cities. The optimization is composed to two procedures: meta
training on source cities and fine-tuning on target city for the
recommendation.

Meta training on source cities. As described in Section
IV-A and IV-B, the loss of METAODE contains two parts,
i.e. Lmem for learning the city-invariant embeddings and Lst

for learning the city-specified spatio-temporal influences. For
a given user u in source city s, the objective function of
METAODE integrates the two parts.

Ls(u) = Ls
st(u) + γLs

mem(u) (11)

where γ is a trade-off hyper-parameter and is used to balance
the effect of each part.

For citywide POI recommendation, the best parameter sets
in different cities are not the same. In meta training, we
aim to learn an initial parameter set Θ0 which has the best
generalization ability and can be adapted to the target city
with limited fine-tuning. To achieve this, model-agnostic meta-
learning [8] is employed to learn Θ0. Specifically, we take the
recommendation in different source cities as different tasks. In
each training batch, we first sample users from source cities
S, and calculate the gradient update for each source city as
follows:

Ls =
∑

Sampled u in Us

Ls(u)

Θs
0 = Θ0 − α∇Θ0Ls

(12)

The model parameters are trained by minimizing the loss Ls

with respect to Θ0 across all users sampled from the source
cities. Formally, the meta-objective is as follows:

min
Θ0

∑
s∈S
Ls|Θs

0 (13)

where Ls|Θs
0 is the updated loss for sampled users in s with

respect to Θs
0. Then, the model parameters can be optimized

utilizing stochastic gradient descent (SGD), such that the
parameters Θ0 are optimized as follows:

Θ0 ← Θ0 − β∇Θ0

∑
s∈S
Ls|Θs

0 (14)

Thus, by optimizing Equation 14, we can obtain an initial-
ization set of parameters Θ0 which can generalize well on
different source cities.

Fine-tuning on target city for recommendation. When
recommending POIs for target city p, METAODE takes Θ0

Algorithm 1 Optimization of METAODE.
Input:

Historical in source cities S;
Historical in target city p;

Output:
Recommended POIs for users in target city p

1: Sample users from source cities.
2: while METAODE not convergence do
3: for each city s ∈ S do
4: Evaluate Lst, Lmem according to Eq. (10) and Eq.

(4)
5: Calculate the gradient update of Θs by Eq. (12)
6: end for
7: Update Θ0 with SGD by Eq. (14);
8: end while
9: # Fine-tune METAODE on target city p

10: while METAODE not convergence do
11: Update parameter Θp with gradient descent by Eq. (17)
12: end while

to initialize the parameters and fine-tunes them with the
historical data of p. Specifically, the outputs of ST-ODE and
USER-MEM are fused together to generate the final visiting
probabilities of all POI for user u at time t̂.

h = concat(ht̂,u)

O = softmax(Wrh + br)
(15)

where t̂ is a continuous time point and the latent representation
h contains both spatio-temporal context and user preference
information; O ∈ RD×1 indicates the visiting probabilities of
all POIs in city p at t̂.

Due to the large amount of POIs in one city, directly
optimize the probability distribution over all POIs would be
intractable and inefficient. Denoting the ground truth POI of
u at t̂ as v and yv as the probability of related item in O, we
leverage negative sampling strategy to sample a set of negative
POIs V− for v. For all check-ins in p, we first calculate all the
probabilities of all ground truth POIs V and the loss function
can be formulated as follows:

Lrec(u) = −
∑
v∈V

∑
v−∈V−

ln(yv− − yv) (16)

For the target city p, we first initialize Θp with Θ0 and
optimize as follows:

Θp ← Θp − α∇Θp

∑
u∈Up

Lrec(u) (17)

where Up is the user set of city p. The optimization of
METAODE is shown in Algorithm 1. In usage, POIs with high
probabilities in O are selected as the recommended POIs.

V. EXPERIMENT

In this section, we conduct extensive experiments to demon-
strate the effectiveness of METAODE. Our experimental eval-
uation is designed to answer several research questions(RQs).
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• RQ1: Does METAODE outperform other state-of-the-art
methods for citywide next POI recommendation?

• RQ2: What is the capability of the proposed ST-ODE and
USER-MEM?

• RQ3: What are the benefits of the meta-learning mecha-
nism?

• RQ4: What are the influences of different hyper-parameter
settings?

• RQ5: What is learned in METAODE to transfer from data
sufficient cities?
Next, we introduce the experimental settings, experimental

results, ablations studies and hyper-parameter studies respec-
tively. Finally, we conduct some case studies to illustrate what
is learned in METAODE.

A. Experimental settings

We first introduce the datasets, compared baseline, eval-
uation metrics and parameter settings of our experiments.
Then we evaluate METAODE against other state-of-the-art
algorithms.

1) Datasets: In our experiments, we use open-source
check-in datasets, Foursquare [31], to evaluate the perfor-
mance of METAODE. This dataset includes about 18 months
(from April 2012 to September 2013) global-scale check-in
data containing 33,278,683 check-ins by 266,909 users on
3,680,126 venues spanning across 415 cities. We overview
the statistics of cleaned datasets in Table II. As shown, the
average check-in records of users are fairly different between
cities. Here, New York (NY), Chicago (CHI) and Washington
DC (DC) are used as the source cities, and Los Angeles (LA)
and San Francisco (SF) are used as the target cities. For the
convenience of evaluation, we select sub-datasets of the target
cities that only contain one week and one month check-ins to
simulate the data scarcity scenarios.

TABLE II
STATISTICS OF THE SELECTED DATASETS

Cities Users POIs Check-ins
New York 17,385 66,660 581,544

Los Angeles 8,969 21,556 162,658
San Francisco 5,455 11,076 87,906

Chicago 6,870 21,880 184,435
Washington 6,420 13,828 131,444

Tokyo 12,613 88,546 1,100,216
2) Evaluation Metrics: We use two different metrics for

performance evaluation, Hit Ration (HR@K)and Normalized
Discounted Cumulative Gain (NDCG@K). HR@K measures
whether the test POI shows within the top K in the ranked list
while the NDCG@K takes the position of the test POI into
account and penalizes the score if it is ranked lower in the
list.

3) Compared Baselines: Here, we roughly divide 10 com-
pared baselines into three groups: general recommendation
methods, next POI recommendation methods, and ablations
of METAODE.

General recommendation methods.

• MF-BPR [25]: A Bayesian personalized ranking optimized
MF model with a pairwise ranking loss. It is tailored to
recommendations with implicit feedback data.

• CML [9]: A recently incepted algorithm that minimizes
the distance between each user-POI interaction in Euclidean
space.

Next POI prediction methods.

• PRME [7]: A metric embedding based next POI recommen-
dation method to avoid drawbacks of the MF. Specifically, it
embeds users and POIs into the same latent space to capture
the user transition patterns.

• STGCN [37]: Recent next POI recommendation method,
which implements time gates and distance gates into LSTM
to capture the spatio-temporal relation between successive
check-ins for POI recommendation.

• ST-RNN [18]: A RNN-based location prediction method,
which considers time interval influences. It can be adopted
to next POI recommendation directly.

• DeepMove [6]: An effectively attentional recurrent network
for mobility prediction from lengthy and sparse trajectories,
which utilizes the periodicity nature to augment the RNN
for mobility prediction.

Ablations of METAODE.

• METARNN: Replace the ST-ODE module in METAODE
to standard LSTM and train the model with the meta-
learning mechanism.

• METAODE meta− : Train METAODE in all source city
directly without the meta-learning mechanism and fine-tune
the model on the target city.

• METAODE mem− : A simplified version of METAODE
without the memory module. The user preference is modeled
with an embedding matrix and concatenated with the record
embedding in ST-ODE.

Note that these compared methods are not for citywide next
POI recommendation, we utilize historical data in all cities to
train these models and use the same testing data to evaluate
the performances.

4) Parameter Settings: For USER-MEM, we set the di-
mensions of each user group as 10, the dimensions of each
category as 10. For ST-ODE, the dimension of hidden state of
h is set as 50, and dt and dl are set as 48 and 40, respectively.
In the training process, the trade-off hyper-parameter γ is
set as 10−1 and the number of updates for each task is set
as 6. Moreover, all the models are trained by Adam. The
training batch size for each meta-iteration is set as 128, and
the maximum of iteration of meta-learning is set as 1000.

B. Experimental Results

The comparison experimental results of METAODE are
shown in Table III. For better understanding, we also illustrate
the performance changing of METAODE and other selected
baselines in Figure 5 with the increasing of the recommended
number of POIs. Next, we analyze the results and answer the
research questions RQ1.
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TABLE III
PERFORMANCE COMPARISON OF DIFFERENT METHODS IN NEXT POI RECOMMENDATION SCENARIOS IN TERMS OF HR@5, NDCG@5, HR@10 AND

NDCG@10. BEST PERFORMANCE IS IN BOLDFACE.

Type Method City HR@5 NDCG@5 HR@10 NDCG@10

General
MF-BPR SF 0.03456 0.02304 0.06283 0.04409

LA 0.03312 0.02801 0.06103 0.04334

CML SF 0.05872 0.04912 0.14871 0.10594
LA 0.05541 0.04647 0.14276 0.10012

Context-aware

PRME SF 0.04076 0.03247 0.10189 0.06719
LA 0.03972 0.03032 0.09535 0.06197

ST-RNN SF 0.05006 0.03903 0.13649 0.08359
LA 0.04718 0.03827 0.12902 0.08143

DeepMove SF 0.06012 0.04997 0.15096 0.10889
LA 0.05982 0.04921 0.14872 0.10727

STGCN SF 0.07043 0.05819 0.16762 0.12440
LA 0.06801 0.05654 0.16426 0.12026

Ablations

METARNN SF 0.08122 0.07031 0.20872 0.16252
LA 0.08086 0.06769 0.20224 0.16157

METAODE meta−
SF 0.09092 0.07568 0.23125 0.17798
LA 0.08923 0.07221 0.22767 0.17503

METAODE mem−
SF 0.10522 0.08301 0.25125 0.18799
LA 0.09886 0.07969 0.24872 0.18503

Our METAODE SF 0.11175(+6.21%) 0.09740(+14.77%) 0.27863(+10.89%) 0.22732(+20.92%)
LA 0.10782(+9.06%) 0.09554(+16.58%) 0.26882(+9.87%) 0.22650(+22.41%)

(a) SF-HR@N (b) SF-NDCG@N (c) LA-HR@N (d) LA-NDCG@N

Fig. 5. Evaluation of Top-N POI recommendation where N ranges from {1, 5, 10, 15, ..., 45, 50} on San Francisco(SF) and Los Angeles(LA)

• As shown, the performance of METAODE beats all com-
pared baselines on all evaluation metrics consistently. This
result shows the superiority of the proposed modules and
answers the RQ1.

• Among all the compared methods, STGCN is the strongest
baseline. Although it models the sequential influences
and spatial-temporal correlations, it is also inferior to
METAODE. The reason is that STGCN only captures the
information lying in the target city and can not borrow
knowledge from other cities.

• For different groups of baselines, the next POI recommenda-
tion methods outperform the general ones, which shows that
the sequential influences of historical check-ins is critical in
this task.

C. Ablation Studies

To answer the RQ2 and RQ3, we compared the perfor-
mance of METAODE with its ablations.

Contribution of USER-MEM. Comparing METAODE with
METAODE mem− , the averaged relative improvement is above
10%. This is because our model can not only capture the

city-invariant category information for knowledge transfer but
also learn a better initialization of METAODE. Moreover, the
long-term user-category pattern memory helps learn a further
enhanced initialization.

Contribution of ST-ODE. Comparing METAODE with
METARNN, METAODE achieves better performance. The
results indicate that neural ODE can handle the sporadic data
more naturally and can more finely model the dynamics and
correlations between the check-in records, which results in
higher performance than other methods for both datasets.

Contribution of Meta-learning. Comparing METAODE
with METAODE meta− , METAODE performs better in most
cases, suggesting the superiority of our meta-learning mech-
anism. The potential reason is that METAODE meta− can-
not distinguish the city-invariant information, and thereby
largely decay the performance. By incorporating meta-training,
METAODE not only learns the well-generalized initialization
of parameters but also achieves the better performance in target
cities.
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D. Hyper-parameter Studies
To answer the RQ4, in this subsection, we evaluate the in-

fluences of hyper-parameter settings. Specifically, we analyze
the impacts of two key parameters of METAODE, i.e., the
dimension d of memory representation and the trade-off factor
γ of two losses in the joint objective.

For the dimension d, we change the d from 2 to 20 in
USER-MEM. The performance of POI recommendation on
San Francisco and Los Angeles are shown in Figure 6(a)
and Figure 6(c), respectively. With the increase of d, we
find that the performance first increases and then decreases.
One potential reason is that the memory provides too little
information when the d is too small, while it can include too
much irrelevant information when it’s too large. Both of the
scenarios hurt the performance. For γ, we search γ from 10−6

to 0.5. The results are shown in Figure 6(b) and Figure 6(d).
The changing pattern is quite similar to d, which indicates
both USER-MEM and ST-ODE are critical for our task.

(a) (b)

(c) (d)

Fig. 6. (a) (c) HR@5 with respect to the memory dimension on San
Francisco/Los Angeles; (b) (d) HR@5 with respect to the value of γ on San
Francisco/Los Angeles.

E. Case Studies
To answer the RQ5, we sample some representative users

in different cities and analyze what is learned in METAODE.
Specifically, we visualize the attention weights of users on
the city-invariant user group embeddings and compared the
favorite categories of different users. Here, we randomly select
10 users from San Francisco (SF) and Los Angeles (LA),
and show the top-10 favorite categories of them in Table IV.
Note that, {u0 − u4} are sampled from SF and {u5 − u9}
are sampled from LA. The heat-map of attention weights on
the user group embeddings are shown in Figure 7, where the
color scale represents the strength of the attention weights,
and each row represents the attention score vector for each
representative user.

As shown, compared attention weights with the semantic
meaning for each user as presented in Table IV, we can find
that similar user preferences have similar attention-styles. User
u2, u7 and u9 have similar attention vectors and their top-
10 categories all includes ”Bar”, ”Train station” and ”Coffee
shop”. In contrast, attention weights of user u1 is distinctive
with others, demonstrating that the preference of u1 is different
from other users. Moreover, although users are sampled from
different cities, find that users having similar favorite cate-
gories also have close attention style, e.g. u2 and u9. u3 and
u6. It indicate that user groups are relatively similar across
different cities. These results indicate that the user group
embeddings can be used to capture city-invariant information.

Fig. 7. Attention weights of sampled users.

VI. CONCLUSION

In this paper, we study the problem citywide POI recom-
mendation. A meta-learning enhanced neural ODEs model,
namely METAODE, is proposed to leverage knowledge from
data sufficient cities to enhance the recommendation perfor-
mance of insufficient ones. Specifically, METAODE utilizes
the memory network to model the user preference with the
city-invariant POI category information and user groups, and
integrates a neural ODE model for capturing the city-specific
spatio-temporal influence. Moreover, we propose to learn a
well-generalized initialization of parameters in METAODE
through meta-learning mechanism to adapt METAODE to data
insufficient target cities. Comprehensive experiments demon-
strate the proposed method significant outperforms all com-
pared baselines. In the future, we plan to extend METAODE
on two directions:(1) We plan to incorporate the content
information such as user’s profiles and POIs’ attributes to
further improve the performance; (2) We plan to consider
graph structure(e.g., road network) to enhance the spatial
influence modeling.
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TABLE IV
FAVORITE CATEGORIES OF SELECTED USERS

UserID Top-10 categories
u0 [’Sculpture Garden’, ’General Travel’, ’Clothing Store’, ’Gourmet Shop’, ’Tattoo Parlor’, ’Drugstore / Pharmacy’, ’Gift Shop’, ’Residential Building (Apartment / Condo)’, ’Coffee Shop’, ”Doctor’s Office”]
u1 [’Auditorium’, ’Bed & Breakfast’, ’Indian Restaurant’, ’Parking’, ’Assisted Living’, ’Taxi’, ’Bank’, ’Government Building’, ’Plaza’, ’Fast Food Restaurant’]
u2 [’Art Gallery’, ’Pier’, ’Chinese Restaurant’, ’Theater’, ’Park’, ’Pizza Place’, ’Building’, ’Bar’, ’Train Station’, ’Coffee Shop’]
u3 [’Rest Area’, ’Video Store’, ’Light Rail’, ’City’, ’Hot Spring’, ’Neighborhood’, ’Skate Park’, ’Road’, ’Outdoors & Recreation’, ’Optical Shop’]
u4 [’Donut Shop’, ’Grocery Store’, ’Building’, ’Department Store’, ’African Restaurant’, ’Miscellaneous Shop’, ’General Entertainment’, ’Bowling Alley’, ’Paper / Office Supplies Store’, ’Fried Chicken Joint’]
u5 [’Lighthouse’, ’Travel & Transport’, ’Video Store’, ’Scenic Lookout’, ’Dog Run’, ’General Travel’, ’Convenience Store’, ’Park’, ’Bridge’, ’Road’]
u6 [’Gym’, ’Paella Restaurant’, ’Baseball Field’, ’Bakery’, ’Latin American Restaurant’, ’Sporting Goods Shop’, ’Fish Market’, ’Building’, ’Furniture / Home Store’, ’Juice Bar’]
u7 [’City’, ’Greek Restaurant’, ’Baseball Stadium’, ’Burger Joint’, ’Office’, ’Bar’, ’Train Station’, ’Coffee Shop’, ’Gym’, ’Grocery Store’]
u8 [’Auditorium’, ’Bed & Breakfast’, ’Indian Restaurant’, ’Parking’, ’Assisted Living’, ’Taxi’, ’Bank’, ’Government Building’, ’Plaza’, ’Fast Food Restaurant’]
u9 [’Art Gallery’, ’Bookstore’, ’Music Venue’, ’Airport’, ’Office’, ’Bar’, ’Train Station’, ’Coffee Shop’, ’Gym’, ’Grocery Store’]
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