
A Graph-based Approach for Trajectory Similarity
Computation in Spatial Networks

Peng Han
King Abdullah University of Science

and Technology
peng.han@kaust.edu.sa

Jin Wang
University of California, Los Angeles

jinwang@cs.ucla.edu

Di Yao
Institute of Computing Technology,

Chinese Academy of Sciences
yaodi@ict.ac.cn

Shuo Shang∗
University of Electronic Science and

Technology of China
jedi.shang@gmail.com

Xiangliang Zhang∗
King Abdullah University of Science

and Technology
xiangliang.zhang@kaust.edu.sa

ABSTRACT
Trajectory similarity computation is an essential operation in many
applications of spatial data analysis. In this paper, we study the
problem of trajectory similarity computation over spatial network,
where the real distances between objects are reflected by the net-
work distance. Unlike previous studies which learn the represen-
tation of trajectories in Euclidean space, it requires to capture not
only the sequence information of the trajectory but also the struc-
ture of spatial network. To this end, we propose GTS, a brand new
framework that can jointly learn both factors so as to accurately
compute the similarity. It first learns the representation of each
point-of-interest (POI) in the road network alongwith the trajectory
information. This is realized by incorporating the distances between
POIs and trajectory in the random walk over the spatial network
as well as the loss function. Then the trajectory representation
is learned by a Graph Neural Network model to identify neigh-
boring POIs within the same trajectory, together with an LSTM
model to capture the sequence information in the trajectory. We
conduct comprehensive evaluation on several real world datasets.
The experimental results demonstrate that our model substantially
outperforms all existing approaches.

CCS CONCEPTS
• Information systems → Traffic analysis.

KEYWORDS
graph neural networks; spatial network; trajectory similarity
ACM Reference Format:
Peng Han, Jin Wang, Di Yao, Shuo Shang, and Xiangliang Zhang. 2021. A
Graph-based Approach for Trajectory Similarity Computation in Spatial
Networks. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge

∗Corresponding Author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00
https://doi.org/10.1145/3447548.3467337

Discovery and Data Mining (KDD ’21), August 14–18, 2021, Virtual Event, Sin-
gapore. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3447548.
3467337

1 INTRODUCTION
Trajectory similarity computation is a fundamental operation in a
wide range of real world applications, such as route planning [30],
trajectory clustering [33] and transportation optimizations [25]. A
Trajectory describes the path traced by bodies moving in space
over time [2], and is usually represented as a sequence of discrete
locations. To measure the similarity between two trajectories, many
metrics are proposed in previous studies, such as Dynamic Time
Warping [34] (DTW), longest common subsequence [28] (LCSS),
edit distance with real penalty [4] (ERP) and edit distance on real
sequences [5] (EDR). However, these metrics require quadratic
computational complexity O(n2), where n is the average length
of trajectories. As a result, the high computation cost of above
similarity metrics becomes a serious problem when dealing with
massive trajectory data. To resolve such problems, some recent
studies [18, 31, 35] utilized neural network based models to learn
the representation of trajectories. And the similarity between trajec-
tories could be measured by that of the low-dimensional embedding
vectors, which can be finished in linear time.

While above approaches are effective for measuring the trajec-
tory similarity in Euclidean space, they cannot be applied in the
problem of trajectory similarity computation over spatial network,
such as road network. In many real application scenarios, objects
are moving in spatial networks rather than in Euclidean space. In
a spatial network, Euclidean distance might lead to errors when
calculating the real distance between objects. To better understand
the difference between these them, consider the concrete example
shown in Figure 1. The Euclidean distance between trajectories τ1
and τ2 is smaller than that between τ1 and τ3. But the real distance
on the road network between τ1 and τ3 is actually much smaller, as
there is no passage between τ1 and τ2 in the road network.

There are several previous studies [8, 17, 23] focusing on the
computation of trajectory similarity over spatial networks. They
proposed handcrafted heuristic approaches to align the trajectory to
spatial network so as to compute some user defined similarity func-
tions, which still suffer from high computational overhead. How-
ever, the difficulty in adopting deep learning based techniques to
this problem is two-fold. On the one hand, it is essential to take the

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

556

https://doi.org/10.1145/3447548.3467337
https://doi.org/10.1145/3447548.3467337
https://doi.org/10.1145/3447548.3467337

POI Road Network

 τ1 τ2 τ3

Figure 1: Example of Trajectory Similarity Measurement
over Spatial Network

network structure into consideration when learning the trajectory
embedding, while existing solutions for Euclidean space [18, 31, 35]
only capture the sequence information. On the other hand, the
learning process suffers from data sparsity: due to the large prob-
lem space which is exponential w.r.t. the number of POIs in the
spatial network, the coverage of training data might be insufficient
to include all possible combinations. As a result, once a trajectory
pattern is infrequent or evenmissing in the training data, the trained
model cannot learn a high-quality embedding for it.

To address above issues, in this paper we propose Graph-based
approach for measuring Trajectory Similarity (GTS), a novel frame-
work of trajectory representation learning for similarity compu-
tation over spatial networks. GTS consists of three steps, namely
measuring trajectory similarity, learning point-of-interest (POI)
representation and learning trajectory embedding. We start from
the similarity measurement between trajectories, which is the first
step towards a robust framework for learning trajectory embed-
ding. To reflect the relationship between trajectories on the road
network as well as the inherited properties of each single trajectory,
we define the trajectory similarity from three aspects: POI-wise
distance, POI-Trajectory distance and Trajectory-wise similarity.

Based on such definitions of trajectory similarity over the spatial
network, we then learn the trajectory embedding in the following
two steps. We first learn the embedding of each POI in the spa-
tial network, which serves as a cornerstone for the embedding of
trajectories. While previous works [9, 12, 26] learn the POI embed-
ding mainly by learning the spatial information, here we need to
take the trajectories into consideration along with the topology of
spatial network. To this end, we propose a trajectory-aware ran-
dom walk algorithm and a new loss function to train a skip-gram
model such that POIs co-occurring in these random walks would
produce similar embeddings.. In the next step, we learn trajectory
representation on the basis of such POI embeddings. To overcome
the data sparsity problem, we use Graph Neural Network (GNN) to
encode the embedding of each POI with its neighbor information.

Then a trajectory becomes a sequence of POIs and we can learn its
representation with a Long Short-Term Memory (LSTM) network.
In this way, the learned representation will contain richer informa-
tion of the network structure and thus is capable to reflect various
trajectory patterns even if they are not explicitly included in the
training data.

The main contributions of this paper are summarized as follow-
ing:

• We propose a graph-based framework GTS for the problem
of trajectory similarity computation over spatial network.
To the best of our knowledge, it is the first work to solve this
problem with graph-based deep learning techniques.

• We devise a trajectory-aware random walk algorithm with
new sampling strategy to learn embedding of each POI in the
spatial network so as to integrate the trajectory information
with the network structure.

• On the basis of that, we further design a GNN-LSTM model
which is robust to data sparsity and noisy in given trajecto-
ries to learn high-quality trajectory representations.

• We conduct an extensive set of experiments on popular real-
world datasets. The results show that our proposed methods
significantly outperform the existing approaches in terms of
accuracy.

The rest of the paper is organized as following: Section 2 surveys
the related work. Section 3 introduces necessary background knowl-
edge and problem settings. Section 4 and Section 5 proposes the
techniques to learn the representation of a single location and the
whole trajectory, respectively. Section 6 reports the experimental
results. Finally Section 7 concludes the paper.

2 RELATEDWORK
2.1 Non-learning Trajectory Similarity

Computation
There are two categories of traditional approaches for trajectory
similarity computation. One is grid based similarity, which use
distances in Euclidean space. Previous studies in this category rely
on the distance aggregation over all points on the trajectory to
compute the similarity, such as Dynamic TimeWarping [34] (DTW),
longest common subsequence [28] (LCSS), edit distance with real
penalty [4] (ERP), edit distance on real sequences [5] (EDR) and
Hausdorff [1]. They are expensive in computation time even with
some optimizations [21] and might suffer from noisy points in
trajectories.

The other one is spatial network based similarity, where trajecto-
ries are first mapped to the spatial network and then the similarity
is computed by applying similarity functions on top of the trans-
formed trajectories. Earlier approaches utilized metrics like shortest
path and set-based similarity to describe the similarity between
trajectories. Shang et al. [23] proposed a joint similarity function
to consider both spatial and temporal similarity as well as several
indexing and pruning techniques. Wang et al. [29] defined a new
function called Longest Overlapping Road Segments to measure
the similarity between two transformed trajectories. Unfortunately,
existing road-constrained trajectory measures either suffer from
the high computation problem or are too simple to used in real-life
applications.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

557

There are many applications regarding trajectory similarity com-
putation. Several previous studies [6, 22, 24] aimed at accelerating
the similarity search and join over trajectory data by devising in-
dex and pruning techniques. Specifically, tree-based index struc-
tures [5, 8] , such as K-D tree or R-tree are employed to organize
the trajectories. Then, bounding-box-based pruning techniques
are proposed to eliminate unnecessary computations. Zheng et
al. [37] studied the problem of inference hidden route from known
trajectories. Song et al. [25] focused on the problem of trajectory
compression based on road network.

2.2 Deep Learning based Approaches
Recently deep learning techniques have been widely adopted to
many problems related to spatial data analysis [12, 13, 36]. A com-
prehensive survey is made in [2]. Some existing studies employ
neural network models to learn the representation of trajectories
and then compute the similarity by measuring that between the
embedding vectors. Li et al. [18] adopted an encoder-decoder archi-
tecture to obtain trajectory vector representations. Yao et al. [31, 32]
further improved the performance by devising new spatial attention
mechanism and using pair-wise distance as guidance for learning.
Zhang et al. [35] proposed several new loss functions to improve
the quality of learned embedding. All above methods are designed
for similarity metrics in Euclidean space and cannot be adopted to
our problem as they fail to learn the information from spatial net-
work. Deep learning techniques are also adopted to other trajectory
related problems, such as clustering [33] and route prediction [17],
which has different problem settings with our work.

2.3 Graph Neural Networks
Recent works on the Graph Neural Network (GNN) [15] have at-
tracted considerable attention, motivating the remarkable success
in various graph mining tasks in multiple domains [7, 16]. GNNs
originated from the spectral graph convolutional neural networks
(GCNs) [3]. Afterwards, Kipf and Welling [15] further extended
it for semi-supervised node classification with concise form and
achieved great success. Taking account of large-scale networks,
Hamilton et al. [11] approximated GCN by an inductive representa-
tion learning framework. Later, the attention mechanism was also
introduced to adaptively specify the weights during the training
process [27]. Our work employed the property of GNN that can ob-
tain neighborhood information of each node in the spatial network
so as to overcome the data sparsity problem.

3 PRELIMINARY
3.1 Trajectory with Spatial Networks
We first formally describe the data model of this paper. The spatial
network is represented as a undirected graph G = (V , E). In this
graph, each node v ∈ V is a POI in the spatial network, where the
representation of a road intersection or a road end with attributes
latitude and longitude. Meanwhile, each edge e = ⟨vi ,vj ⟩ ∈ E
represents the distance between two POIs vi and vj . A original
trajectory τ = {p1,p2, . . . ,pk } is composed with sequential points
with latitude and longitude. Then we mapped them into the POI set
V with the nearest distance to generate the corresponding vertex

trajectory τ = {vn1,vn2, . . . ,vnk } and the length of a trajectory
(denoted as |τ |) is defined as the number of POIs in it.

3.2 Similarity Between Trajectories
To develop robust and effective learning techniques, the first step is
to make a proper definition of similarity measurement between two
trajectories over the road network. Different from previous studies
using Euclidean distance, the similarity measurement in our work
should not only reflect the property of a trajectory, but also that
of the spatial network. To achieve this goal, we define trajectory
similarity by considering the distances from two aspects: POI-wise
distance and POI-Trajectory distance.

The POI-wise distance is the distance between two POIs over the
road network, which is defined as the length of the shortest path
between them. Given two POIs vi ,vj ∈ V , if vi is reachable from
vj , we use d(vi ,vj) to denote the length of shortest path, i.e. the
POI-wise distance between them.

Similarly, we can define the POI-Trajectory distance as the short-
est distance between the POI and the trajectory. However, the com-
putation of the exact value is very expensive as we need to compute
distances between the POI and all segments of this trajectory. To
reduce the computation overhead, we define the POI-Trajectory
distance as the shortest POI-wise distance between the given POI
and all POIs in the trajectory. Although the computational com-
plexity of our definition is the same as that of the original method,
the cost is much less in practice since the distances between POIs
in our definition could be reused for different trajectories and the
amortized cost would be rather low. Then given one POI v and
trajectory τ , the POI-Trajectory distance d(v, τ) from the POI to
the trajectory is formulated as Equation (1):

d(v, τ) = min
vi ∈τ

d(v,vi). (1)

Based on above definitions, we then propose the cornerstone of
our learning framework: the Trajectory-wise similarity. To make
a good similarity metrics, the computation of the Trajectory-wise
similarity should have the property of commutativity. Moreover, it
should also be negatively correlated to the actual distance between
trajectories. Based on above consideration, given two trajectories τ1
and τ2, we formulate the definition of similarity Sim(τ1, τ2) between
them as Equation (2):

Sim(τ1, τ2) =

∑
vi ∈τ1 e

−d (vi ,τ2)

|τ1 |
+

∑
vj ∈τ2 e

−d (vj ,τ1)

|τ2 |
, (2)

3.3 Overall Framework
With the definition in Equation (2), we can then formally define the
problem of trajectory similarity computation over the road network
with learning method formally as Definition 3.1.

Definition 3.1. Given a road networkG = (V , E) and a trajectory
set T = {τ1, τ2, . . . , τn }, ∀τi ∈ T it aims at finding a trajectory τj
that minimizes Sim(τi , τj) and i , j.

To address this problem, we propose a two-step framework GTS
shown in Figure 2. Comparing with the end-to-end model architec-
ture, the advantage of a two-step framework is that the training
process is more stable and interpretable. The two steps will be
detailed in Section 4 and 5, respectively.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

558

LSTM1

GNN GNN

LSTM2 LSTMn

GNNGe
ne

ra
te

POI

POI
Embedding

Neighbor
Embedding

GNN
Embedding

Trajectory
Embedding

Road
Network

Trajectory

POI
Embedding

Process

Trajectory
Embedding

Process

Figure 2: Overall Framework of GTS

There are mainly three challenges in the construction of trajec-
tory similarity measurement model.

• The first one is how to utilize the information of spatial
network in the perspective of trajectory, which could be
different from grid-based methods.

• Moreover, how to represent the trajectory should be con-
sidered carefully, as the trajectory representations is closely
related to the computation of trajectory similarity.

• Finally, how to design the objective function will directly
influence the performance of the framework, which should
be designed based on the characteristics of the collected
trajectory dataset.

4 POI REPRESENTATION LEARNING
In this section, we will introduce a new framework TraNode2Vec
for learning the POI representation over road network. We first
give the big picture of the learning objective in Section 4.1 and then
provide more technique details in Section 4.2.

4.1 Objective Function
Since we targeted at learning trajectory similarity over road net-
work, the first step is to learn a high-quality presentation of POIs
in the network. To this end, the learning objective should be with
physical significance so as to include the information of trajectories
into the POI representation. Unlike previous studies that utilized
feature engineering methods based on the expert knowledge, in our
work we aim at learning trajectory-aware POI embedding via the
distance and similarity functions defined in Section 3. As a result,
our approach can not only learn the topology of road network but
also fit the distribution of existing trajectories.

The first step towards this goal is to design a proper objective
function that is consistent with the goal of learning trajectory
similarity. According to our definition of Trajectory-wise similarity,
it is essential to know the distance between POIs so as to estimate
the similarity. Therefore, we aim at identifying a learning objective

to help formulate a representation where the embedding vectors
of nearby POIs or belonging to the same trajectories should also
be closed with each other. In this target, there are two kinds of
relationships between POIs. The first relationship is the topology
relationship between POIs in the road network, which will influence
the distances between them directly. The second one is whether
two POIs belong to the same trajectory. These two relationships
could be metaphysically described as the ‘neighbors’ of POIs, in
which we can model them with existing embedding methods that
are able to capture the property of neighbors.

To capture the property of ‘neighbors’, we could utilize the
well-known Skip-gram [19] approach, which is originated in the
field of natural language processing. It has been exploited in many
applications to learn the representation of basic building blocks,
such as the word embeddings in the article. Given the POI set
V = {v1,v2, . . . ,vm }, we could get the Skip-gram objective func-
tion for our task as Equation (3)

max
f

∑
v ∈V

log P(Ns (v)| f (v)), (3)

where f : v → Rd is the encoder to map the POI into d dimen-
sion vectors, P(·) is probability function and Ns (v) ⊆ V is the
neighbors of POI v which is obtained via a random walk algorithm
described later in Section 4.2. By optimizing this objective function,
the learned embedding of given POI will have explicit connection
with those of its neighbors.

One limitation of above objective function lies in the aspect
of computational efficiency. To resolve this problem, we make a
trade-off between the accuracy and efficiency as following: For the
given POI v , we assume that all its neighbors in Ns (v) ⊆ V are
independent, which can reduce the computational complexity of
the function P(Ns (v)| f (v)). Under this assumption, we have the
objective function as Equation (4):

P(Ns (v)| f (v)) =
∏

vi ∈Ns (v)

P(vi | f (v)). (4)

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

559

Given POIs vi and v , the value of P(vi | f (v)) satisfies the follow-
ing conditions: (i) the value of probability should be ranged in [0, 1];
and (ii) the sum of all probabilities for the given POI v should be 1.
Thus we employ the softmax function that has been widely used to
compute the probability in multiple classification problems. Then
we have the explicit formulation of P(vi | f (v)) as Equation (5)

P(vi | f (v)) =
ef (vi)·f (v)∑

vj ∈V ef (vj)·f (v)
. (5)

However, the computation of
∑
vj ∈V ef (vj)·f (v) is time-consuming

in the training process. The reason is that function f (·) will be
updated after every epoch and the computation

∑
vj ∈V ef (vj)·f (v)

cannot be reused. To solve this problem, the negative sampling
method could be utilized to reduce the computation time by pair-
wise loss.

4.2 Finding Neighbors
Next we discuss how to generate the compute the set of neighbors
Ns (v) of given POI v in the objective function. Previous network
embedding approaches, such as node2vec [10], find such neighbors
by a random walk algorithm based on the topology structure of
the graph. However, in our work we need to not only consider the
topology structure of the road network but also the given existing
trajectories.

To address this issue, we employ a randomwalk algorithm to find
Ns (v) for given POI v the topology structure of the road network.
Given a starting POI v and the length of walks nw , the random
walks method will generate a random path with starting POI v
and nw nodes. The generation process is proceeded node-wise, and
every node in the path is depended on previous nodes. With the
starting node c0 = v , we generate the i-th node ci for the random
path as Equation (6):

P(ci = x |ci−1 = s) =

{
πsx
Z if(s, x) ∈ E,

0 otherwise,
(6)

where πsx is the transition probability from s to x and Z is a nor-
malization constant.

As our goal is to learn a trajectory-aware POI representation, we
need to reflect the influence of existing trajectories in the definition
of transition probability in random walks. The probability of next
node in previous approaches such as node2vec is only decided by
the node visited in the previous two steps. While this approach
can capture the topology structure of the graph, it fails to take the
trajectories into consideration in our problem setting. To ensure
whether two POIs are in the same trajectory, we need to devise a
random walk algorithm where the transition probability in each
step is also influenced by the starting node of a trajectory.

To reach this goal, a straightforward solution for that is via a
sampling based method. Instead of only considering the previous
two nodes, we choose the next node according to both the previous
two nodes and starting node. The relationship between the next
and previous two nodes could keep the topology structure of the
graph. And the trajectory information will be maintained in the
connection between the next and starting nodes.

Assuming that the random walk just visited the edge (t, s) with
current node s , we define the transition probability as πsx = α(t, x)·

v
t

x1

x2

x3

s

! = 1/q

x4

! = 1

! = 1/p

! = 0

! = 1/q

Network

Trajectory

Figure 3: Illustration of our random walk.

e−d (s ,x), where the distance in the road network between POIs s
and x is incurred in the term d(s, x). And α(t, x) is probability of
sampling defined in Equation (7):

α(t, x) =

1
p if dtx = 0 and {v, x}∈̃τ

1 if dtx = 1 and {v, x}∈̃τ
1
q if dtx = 2 and {v, x}∈̃τ

0 otherwise,

(7)

where dtx is the path containing the least number of POIs between
t and x , and the operation {v, x}∈̃τ means there is one trajectory
τ ∈ T that x ∈ τ and v ∈ τ . The illustration of this process could be
found in Fig. 3.

In this way, we can ensure that all nodes in the path have direct
connection with the starting node v . Moreover, the topology struc-
ture of the road network could also be maintained in our sampling
method.

5 GRAPH-BASED TRAJECTORY EMBEDDING
In this section, we introduce how to learn the trajectory embedding
based on the POI representation learned previously.

5.1 GNN-based Representation
Although the POI representation has captured certain information
from the spatial network, we still need to incorporate it in the
process of learning trajectory embedding. The reason is that we
need the information of spatial network from different aspects: In
the process of POI representation learning, the spatial network is
exploited to make the embedding of connected POIs in the spatial
network similar; while in the process of learning trajectory embed-
ding, we need more information about node connections from the
spatial network so as to make the trajectory representation more
stable and robust.

The main challenge of the trajectory representation is that the
search space is the enumeration of combination among all POIs.
As a result, we cannot get sufficient training instances to cover all
possible trajectory patterns and thus it results in the data sparsity
problem. To overcome this problem, we could utilize graph neural
networks (GNN) to incorporate more information from the spatial
network into each trajectory. The reason that we employ GNN here
is that its Laplacian regularization term in the objective function

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

560

of GNN could make the connected nodes keep the same labels
and thus help alleviate the sparsity problem. More specifically, the
computation of GNN incurs the information of neighbors for the
given node.

In our task, we can deal with the sparsity by utilizing more POIs
with the same set of trajectories. With the help of GNN, for each
POI in one trajectory, we could impose its neighboring POIs to
generate trajectory embedding. In this way, there will be a larger
number of common POIs between similar trajectories. And for a
given trajectory, it is easier to find the most similar trajectory in
the training set to satisfy our goal in Definition 3.1.

To this end, we build the graph based on the POIs imposed for
each POI in the trajectory as the input graph for GNN. Meanwhile,
we could use the spatial network to construct the adjacent graph for
GNN where only POIs that in the spatial network will be connected
in the adjacent graph. In this way, we could directly incorporate
the spatial network to compute the trajectory representation.

Given the POIsV = {v1,v2, . . . ,vm } and weights set E, we could
construct the adjacent graph G as Equation (8):

Gi j =

{
1 if (vi ,vj) ∈ E

0 otherwise.
(8)

This adjacent graph G will be symmetric with diagonal element
zeros.

Nevertheless, the adjacent graph G in this format still cannot
accurately reflect the relationship between POIs. The reason is that
values in G are not equal to the influence between the nodes. To
address this issue, we construct the Laplacian matrix A in our work
with a weight α to control the influence of neighbors as Equation (9)

A = I + αNorm
(
G
)
, (9)

where I is the identity matrix and Norm(G) is the normalization
function that every entry will be divided by the ℓ1-norm of its
corresponding row vector. We use P = {p1, p2, . . . , pn } to denote
the POI embeddings V = {v1,v2, . . . ,vn }, where pi = f (vi) and
f (·) is the POI embedding function learned by Equation (3).

As every POI and its neighbors are a subset ofV , we only need a
subgraph from the graphG to generate the representation by GNN.
Here we use the Graph Neural Network (GNN) [15] model as the en-
coder. Given a POI vi and its neighbors N (vi) = {vi1 ,vi2 , · · · ,vik },
the representation p̃i is generated by a 1-layer GNN defined as
Equation (10)

p̃i = AiPiW , (10)

where Ai is the row vector of the adjacent matrix A for the POI
vi , Pi is the stack of features {pi , pi1 ; pi2 ; · · · ; pik } for POI vi and
all its neighbors, andW is the learned parameter to project the
combined POI features into a new space.

Once the GNN-based embeddings are obtained, we could use
them to construct our trajectory embedding with sequence model.
Here we choose LSTM to fulfill this task. Specifically, we use the
output of the last time step as the trajectory embedding. Given
the network representation P = {p̃1, p̃2, . . . , p̃n } of a trajectory τ ,
we could generate its embedding E with LSTM as LSTM(P), where
LSTM(·) is the operation of LSTMwhich will output the embedding
vector in its last timestep.

Table 1: Statistics of datasets

Beijing New York
#POIs 28,342 95,581
#Edge 27,690 260,855
#Trajectory 5,621,428 10,541,288
Ave Length 25 38

5.2 Similarity Construction
With the representation of all trajectories in the training set, we
then specify the objective function. According to our definition
of Trajectory-wise similarity, the goal of our task is to find the
most similar trajectory for a given trajectory. To reach this goal, we
use the dot product between the embedding vectors of trajectories
to denote the similarity between them. Suppose the embedding
vectors of trajectories τi and τj are Ei and Ej , the similarity score
Sim(τi , τj) can be computed as Equation (11).

Sim(τi , τj) = E⊤i Ej . (11)

5.3 Objective Function
Since we aim at finding the most similar trajectory rather than
calculating the exact similarity score, we do not need to perform
the actual similarity computation in the process of testing. There-
fore, we can decide the objective function in two ways. The first
one is to apply the regression loss that uses the true similarity to
optimize Equation (11). The second one is using the pair-wise loss
that maximize the similarity between the most similar trajectory
and the given one. In our framework, we use the pair-wise loss as
the objective function, which is also widely used in other ranking
based applications.

Then given the trajectory training setT tr , we define the objective
function as Equation (12).

max
∑

τi ∈T tr ,τj ∈T tr \{τ ′i ,τi }

1(Sim(τi , τ
′
i) > Sim(τi , τj)), (12)

where τ ′i is the most similar trajectory for trajectory τi . And 1
is the indicator function that equals one if the condition satisfies,
otherwise it will be zero.

For a given trajectory in Equation (12), we need to compute
similarities between all other trajectories and it. This process would
be very time-consuming as the trajectory dataset is usually vary
large. To reduce the computation time in the training process, we
randomly sample one trajectory instead of traversing all trajectories
for the given trajectory.

6 EXPERIMENTS
In this section, we will demonstrate the effectiveness of our pro-
posed methods by conducting an extensive set of experiments. Re-
sults and the corresponding analysis are introduced by comparing
with 4 state-of-the-art baselines. Moreover, we will give the abla-
tion experiments which will show the effect of some components
in our framework. Finally, parameter sensitivity analysis will be
performed to show the insights of our framework.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

561

6.1 Experiment Setup
6.1.1 Dataset. For the road network, we use two spatial networks
from different cities. One is from the city Beijing, namely the Beijing
Road Network (BRN). The other is from the city New York, namely
the New York Road Network (NRN) 1. There are 28,342 POIs and
27,690 edges in the BRN dataset; and 95,581 POIs and 260,855 edges
in the NRN dataset.

For trajectories in BRN, we use the taxi driving data [38] from
the T-drive project 2. The taxi trajectories in BRN are collected by
taxi id, and the time range of one trajectory may last several days.
So we split these trajectories by hour, then we could get 5,621,428
trajectories in total. The average length of these trajectories is 25
by filtering the abnormal ones. For trajectories in NRN, we use
the taxi driving data from New York. There are 697,622,444 trips
in the original dataset, and we randomly sample a subset of them
to generate the trajectory dataset. After pre-processing, there are
10,541,288 trajectories in our experiments and the average length
of them is 38. The details are summarized in Table. 1. For both
trajectory datasets, we randomly split them into training, evaluation
and testing set with the ratio 20%, 10% and 70%.

6.1.2 Parameter Setting. The details of hyper-parameter setting are
as following. The dimension of POI embedding is set as 128. And the
parameters p and q in the sampling strategy proposed in Section ??
are both set as 1. We conduct grid search to decide the following
hyper-parameters: The dimension of GNN embedding is selected
from the range {32, 64, 128, 256}; The dimension of trajectories
is also from the range {32, 64, 128, 256} in a similar manner of
selecting the dimension of GNN embedding. The parameter α to
control influence of neighbors in GNN is selected from the range
of [0 : 0.1 : 0.9]. We use Adam [14] as the optimizer to train our
proposed methods. The learning rate of Adam is set as 0.001.

6.1.3 Evaluation Metric. Following previous studies, we use the
hitting ratio in top K list (HR@K) as the metric in our experiments
to show the performance of different methods. The definition of
HR@K is set as Equation (13)

HR@K =
1

|T te |

∑
τ ∈T te

|LTτ @K ∩ LRτ |

|LRτ |
(13)

where T te is the test set of trajectories, | · | is the set cardinality,
LTτ @K is the list of predicted most similar trajectories for a given
trajectory τ with length K , and LRτ is the set of most similar trajec-
tory in the training set for the given trajectory τ where LRτ = {τ ′}.

6.1.4 Baseline. As our work is the first deep learning basedmethod
for trajectory similarity over spatial network, we extend four state-
of-the-art methods on similar research problems in our experiments
as baselines to show the performance of our method. The details of
these methods are summarized as follows:

• Traj2vec [33]: They use a sequence-to-sequence model to
learn the representation of the trajectory. Mean square error
is utilized as the loss function to optimize their method.

1https://publish.illinois.edu/dbwork/open-data/
2https://www.microsoft.com/en-us/research/publication/
t-drive-trajectory-data-sample/

Table 2: Results on Beijing dataset

Method HR@1 HR@5 HR@10 HR@20 HR@50
Traj2vec 5.82% 10.57% 18.64% 28.83% 40.07%
Siamese 6.33% 13.25% 20.17% 32.61% 45.58%
NeuTraj 7.72% 19.78% 27.54% 39.63% 53.57%

Traj2SimVec 7.81% 20.42% 29.17% 40.14% 56.75%
GTS 9.21% 25.00% 35.48% 48.07% 66.12%

Table 3: Results on New York dataset

Method HR@1 HR@5 HR@10 HR@20 HR@50
Traj2vec 4.95% 9.33% 16.13% 24.57% 37.24%
Siamese 5.23% 11.12% 18.75% 27.74% 42.16%
NeuTraj 6.15% 15.57% 23.28% 30.18% 48.43%

Traj2SimVec 6.31% 17.03% 26.46% 32.52% 50.55%
GTS 8.43% 21.64% 32.53% 41.69% 58.17%

• Siamese [20]: This method is a time series learning approach
based on the Siamese network. They use the cross entropy
as the objective function to train the framework. We set
the backbone of their Siamese network with LSTM and use
the similar setting as [31] to support trajectory similarity
computation.

• NeuTraj [31]: This method revised the structure of LSTM to
learn the embeddings of grid in the process of training their
framework. To support our task with it, we replace the grid
with POIs in their framework.

• Traj2SimVec [35]: This method employs a new loss for learn-
ing the trajectory similarity by point matching. We apply
their model on the road network in a similar way to learn
the similarity between trajectories.

6.2 Results
The experiment results on the two datasets could be found in Table 2
and Table 3. From these results, we give our observations and
corresponding analysis as follows:

Firstly, our method outperforms all other methods on all met-
rics and this could verify the superiority of our method. The main
reason is that our framework can utilize the information from
road network, where others only consider the information of grid.
Specifically, our method significantly outperforms NeuTraj. The
improvements come from two aspects: (i) The embedding genera-
tion of POIs is independent from the trajectory similarity learning
in our method, where NeuTraj learns them simultaneously; and (ii)
NeuTraj utilizes the regression loss to learn the actual similarity
between two trajectory, while GTS can learn the partial ordering
relationship between trajectories. These two factors both improve
the performance of trajectory similarity computation.

Moreover, one additional reasonwhyGTS is better than Traj2SimVec
is that we use the dot product of embedding vectors to compute
the similarity between two trajectories, where Traj2SimVec uses
the L2-norm of absolute the difference between embedding vec-
tors. Using dot product to compute the similarity is inspired by the
collaborative filtering in the filed of recommendation, which has

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

562

https://publish.illinois.edu/dbwork/open-data/
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/
https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-data-sample/

been proved more effectively than the linear operation as it could
propagate the information between indirectly connected samples
efficiently.

Finally, the advantage of GTS over Siamese lies in that the cross-
entropy loss in Siamese cannot learn the partial ordering relation-
ship between similar and dissimilar trajectories. And the objective
of Siamese is to make the similarity between the similar trajectories
as large as possible. Nevertheless, this optimization process will
lead to overfitting. At them same time, the loss function of GTS
can avoid this problem as its value will be zero if the predicted
similarity between similar trajectories is larger than that between
dissimilar ones.

6.3 Ablation Experiment

Table 4: Ablation Experiment

Method Pr@1 Pr@5 Pr@10 Pr@20 Pr@50
GTS/POI 8.07% 21.38% 30.54% 41.01% 58.55%
GTS/GNN 8.80% 24.15% 33.28% 45.57% 63.31%

GTS 9.21% 25.00% 35.48% 48.07% 66.12%

The main components and contributions in our work are that we
propose a newway to generate the POI embeddings and utilize GNN
to learn the trajectory embeddings. To show the effects of these two
techniques in our framework, we give the ablation experiment in
Table. 4. The settings of these methods are summarized as follows:

• GTS/POI: In this method, we did not utilize our POI embed-
ding as the input for the trajectory similarity model. The
embedding matrix are randomly intialized and trained along
with other components in the framework.

• GTS/GNN: Instead of applying GNN on POIs for further
encoding, we just use our POI embedding as the input for
the LSTM to get the trajectory embedding.

From the results in Table. 4, we can obtain following conclusions
and analysis:

Firstly, we could find that utilizing our POI embedding could
significantly improve the performance. As the objective function of
the trajectory similarity cannot directly constrain the POI embed-
ding in GTS/POI, and the POI embedding learned in this process
will be random without explainable physical significance. Then the
relationship between POI embeddings will be uncertain, and the
combinations of POIs cannot reflect the spatial topology of existing
trajectories on the spatial network. The two-step strategy for the
trajectory similarity learning in our framework could address this
problem: The POI embedding learned in the first step would include
the information of both spatial network and existing trajectories in
the training data. Then the combinations of them will lead to more
reasonable trajectory patterns.

Moreover, we could observe that the GNN can definitely im-
prove the performance of our framework. By applying GNN on
POI embeddings, it could provide richer information of the spatial
network. The reason is that the adjacent graph in GNN has the
same topology structure with the spatial network. Moreover, the
data sparsity problem in the trajectory dataset can also be alleviated
with the help of GNN. For each node in the network, the GNN can

help impose all of its connected POIs to generate trajectory em-
bedding. In this way, the number of common POIs between similar
trajectories will be larger. And for a given trajectory, it is easier to
find its most similar trajectory in the training dataset.

6.4 Parameter Analysis

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
value of parameter α

60

61

62

63

64

65

66

67

H
R

@
50

(a) Results of parameter α

32 64 128 256
Dimension of Trajectory Embedding

52

54

56

58

60

62

64

66

68

70
H

R
@

50

58.25

63.7

66.17 66.15

(b) Results of trajectory dimension

Figure 4: Results of different parameters

Lastly, we conduct the parameter analysis to provide more in-
sights of some components in our framework. From the experiment
results in Figure 4, we have following observations:

As shown in Figure 4(a), we could see that the results vary greatly
with different values of parameter α . This serves as an evidence that
the usage of GNN has significant influence for the performance of
learning trajectory similarity. GNN would incur the information of
neighbors for the given sample. The performance is the best when
α = 0.1, which means the relationship between a given POI and its
neighbors achieves the best state for the trajectory similarity learn-
ing. When α = 0.0, the GNN will be equivalent with MLP, where
there is no neighbors for any given POI. By comparing the results
between α = 0.1 and α = 0.0, we could conclude that for a given
POI, gathering its neighborhood information in an appropriate way
will help improve the performance. However, when the value of α
is too large, the performance will become worse. The main reason
is that in this case, the weights in the adjacent graph cannot reflect
the actual relationship between POIs.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

563

The effect of trajectory embedding dimension could be found in
Figure 4(b). It is obvious that the dimension of trajectory embedding
decides how much information they can contain in the training
process. If the dimension is too small, it will lead to the underfit-
ting problem, where the model cannot fit the training dataset well.
Meanwhile, if the value is too large, it may cause the overfitting
problem, where the model cannot achieve good performance on
test dataset. The overfitting problem could be resolved by many
other technologies, such as our pair-wise loss and GNN component.
And that’s the reason why we could obtain a good performance
when the dimension of trajectory embedding is large.

7 CONCLUSION
In this paper, we proposed the first deep learning based framework
for trajectory similarity computation over spatial network. Com-
pared with existing approaches, our framework is able to capture
underlying route information of the trajectories by considering the
structure of spatial network, thus being robust to the number of
available training instances and noisy points introduced by system
errors. To this end, our GTS framework first employs trajectory-
aware random walk scheme to learn the representation of each
POI in the spatial network. Then it utilizes a GNN based model
combined with LSTM to learn the trajectory representation for
similarity computation. Experimental results on several popular
real-life datasets show the superiority of our framework in term of
effectiveness.

There are several promising directions for future work: Firstly,
it is interesting to expend GTS to jointly learn the spatial and
temporal information from trajectories; Secondly, GTS could also
be applied to other related problems such as trajectory clustering
and route recommendation over road networks. Thirdly, we plan
to further improve the overall performance of GTS by leveraging
recent up-to-date Graph Neural Network models.

ACKNOWLEDGMENTS
The research reported in this publication was supported by fund-
ing from King Abdullah University of Science and Technology
(KAUST), under award number URF/1/3756-01-01. And this paper
was supported by NSFC. U2001212, 62032001 and 61932004. More-
over, this work was also supposed by the National Natural Science
Foundation of China No. 62002343.

REFERENCES
[1] S. Atev, G. Miller, and N. P. Papanikolopoulos. Clustering of vehicle trajectories.

IEEE Trans. Intell. Transp. Syst., 11(3):647–657, 2010.
[2] G. Atluri, A. Karpatne, and V. Kumar. Spatio-temporal data mining: A survey of

problems and methods. ACM Comput. Surv., 51(4):83:1–83:41, 2018.
[3] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally

connected networks on graphs. In ICLR, 2014.
[4] L. Chen and R. T. Ng. On the marriage of lp-norms and edit distance. In VLDB,

pages 792–803, 2004.
[5] L. Chen, M. T. Özsu, and V. Oria. Robust and fast similarity search for moving

object trajectories. In SIGMOD, pages 491–502, 2005.
[6] L. Chen, S. Shang, C. S. Jensen, B. Yao, and P. Kalnis. Parallel semantic trajectory

similarity join. In ICDE, pages 997–1008, 2020.
[7] Y. Chen, L. Wu, and M. J. Zaki. Reinforcement learning based graph-to-sequence

model for natural question generation. In ICLR, 2020.

[8] Z. Chen, H. T. Shen, X. Zhou, Y. Zheng, and X. Xie. Searching trajectories by
locations: an efficiency study. In SIGMOD, pages 255–266, 2010.

[9] S. Feng, G. Cong, B. An, and Y. M. Chee. Poi2vec: Geographical latent represen-
tation for predicting future visitors. In AAAI, pages 102–108, 2017.

[10] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In
ACM SIGKDD, pages 855–864, 2016.

[11] W. L. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on
large graphs. In NIPS, pages 1024–1034, 2017.

[12] P. Han, Z. Li, Y. Liu, P. Zhao, J. Li, H. Wang, and S. Shang. Contextualized
point-of-interest recommendation. In IJCAI, pages 2484–2490, 2020.

[13] P. Han, S. Shang, A. Sun, P. Zhao, K. Zheng, and P. Kalnis. AUC-MF: point of
interest recommendation with AUC maximization. In ICDE, pages 1558–1561,
2019.

[14] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR,
2015.

[15] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolu-
tional networks. In ICLR, 2017.

[16] J. Li, Y. Rong, H. Cheng, H. Meng, W. Huang, and J. Huang. Semi-supervised
graph classification: A hierarchical graph perspective. In WWW, pages 972–982,
2019.

[17] X. Li, G. Cong, and Y. Cheng. Spatial transition learning on road networks with
deep probabilistic models. In ICDE, pages 349–360, 2020.

[18] X. Li, K. Zhao, G. Cong, C. S. Jensen, and W. Wei. Deep representation learning
for trajectory similarity computation. In ICDE, pages 617–628, 2018.

[19] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed rep-
resentations of words and phrases and their compositionality. In NIPS, pages
3111–3119, 2013.

[20] W. Pei, D. M. J. Tax, and L. van der Maaten. Modeling time series similarity with
siamese recurrent networks. CoRR, abs/1603.04713, 2016.

[21] T. Rakthanmanon, B. J. L. Campana, A. Mueen, G. E. A. P. A. Batista, M. B.
Westover, Q. Zhu, J. Zakaria, and E. J. Keogh. Searching and mining trillions of
time series subsequences under dynamic time warping. In ACM SIGKDD, pages
262–270, 2012.

[22] S. Shang, L. Chen, C. S. Jensen, J. Wen, and P. Kalnis. Searching trajectories by
regions of interest. IEEE Trans. Knowl. Data Eng., 29(7):1549–1562, 2017.

[23] S. Shang, L. Chen, Z. Wei, C. S. Jensen, K. Zheng, and P. Kalnis. Trajectory
similarity join in spatial networks. PVLDB, 10(11):1178–1189, 2017.

[24] S. Shang, L. Chen, K. Zheng, C. S. Jensen, Z. Wei, and P. Kalnis. Parallel trajectory-
to-location join. IEEE Trans. Knowl. Data Eng., 31(6):1194–1207, 2019.

[25] R. Song, W. Sun, B. Zheng, and Y. Zheng. PRESS: A novel framework of trajectory
compression in road networks. PVLDB, 7(9):661–672, 2014.

[26] J. Tang and K. Wang. Personalized top-n sequential recommendation via convo-
lutional sequence embedding. InWSDM, pages 565–573, 2018.

[27] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph
attention networks. In ICLR, 2018.

[28] M. Vlachos, D. Gunopulos, and G. Kollios. Discovering similar multidimensional
trajectories. In ICDE, pages 673–684, 2002.

[29] S. Wang, Z. Bao, J. S. Culpepper, Z. Xie, Q. Liu, and X. Qin. Torch: A search
engine for trajectory data. In SIGIR, pages 535–544, 2018.

[30] J.-I. Won, S.-W. Kim, J.-H. Baek, and J. Lee. Trajectory clustering in road network
environment. In IEEE Symposium on Computational Intelligence and Data Mining,
pages 299–305, 2009.

[31] D. Yao, G. Cong, C. Zhang, and J. Bi. Computing trajectory similarity in linear
time: A generic seed-guided neural metric learning approach. In ICDE, pages
1358–1369, 2019.

[32] D. Yao, G. Cong, C. Zhang, X. Meng, R. Duan, and J. Bi. A linear time approach to
computing time series similarity based on deep metric learning. IEEE Transactions
on Knowledge and Data Engineering, 2020.

[33] D. Yao, C. Zhang, Z. Zhu, Q. Hu, Z. Wang, J. Huang, and J. Bi. Learning deep
representation for trajectory clustering. Expert Syst. J. Knowl. Eng., 35(2), 2018.

[34] B. Yi, H. V. Jagadish, and C. Faloutsos. Efficient retrieval of similar time sequences
under time warping. In ICDE, pages 201–208, 1998.

[35] H. Zhang, X. Zhang, Q. Jiang, B. Zheng, Z. Sun, W. Sun, and C. Wang. Trajectory
similarity learning with auxiliary supervision and optimal matching. In IJCAI,
pages 3209–3215, 2020.

[36] K. Zhao, Y. Zhang, H. Yin, J. Wang, K. Zheng, X. Zhou, and C. Xing. Discovering
subsequence patterns for next POI recommendation. In IJCAI, pages 3216–3222,
2020.

[37] K. Zheng, Y. Zheng, X. Xie, and X. Zhou. Reducing uncertainty of low-sampling-
rate trajectories. In ICDE, pages 1144–1155, 2012.

[38] Y. Zheng, X. Xie, and W. Ma. Geolife: A collaborative social networking service
among user, location and trajectory. IEEE Data Eng. Bull., 33(2):32–39, 2010.

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

564

	Abstract
	1 Introduction
	2 Related Work
	2.1 Non-learning Trajectory Similarity Computation
	2.2 Deep Learning based Approaches
	2.3 Graph Neural Networks

	3 Preliminary
	3.1 Trajectory with Spatial Networks
	3.2 Similarity Between Trajectories
	3.3 Overall Framework

	4 POI Representation Learning
	4.1 Objective Function
	4.2 Finding Neighbors

	5 Graph-based Trajectory Embedding
	5.1 GNN-based Representation
	5.2 Similarity Construction
	5.3 Objective Function

	6 Experiments
	6.1 Experiment Setup
	6.2 Results
	6.3 Ablation Experiment
	6.4 Parameter Analysis

	7 Conclusion
	Acknowledgments
	References

