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Abstract—Trajectory clustering, which aims at discovering
groups of similar trajectories, has long been considered as
a corner stone task for revealing movement patterns as well
as facilitating higher-level applications like location prediction.
While a plethora of trajectory clustering techniques have been
proposed, they often rely on spatiotemporal similarity measures
that are not space- and time- invariant. As a result, they cannot
detect trajectory clusters where the within-cluster similarity
occurs in different regions and time periods. In this paper, we
revisit the trajectory clustering problem by learning quality low-
dimensional representations of the trajectories. We first use a
sliding window to extract a set of moving behavior features
that capture space- and time- invariant characteristics of the
trajectories. With the feature extraction module, we transform
each trajectory into a feature sequence to describe object
movements, and further employ a sequence to sequence auto-
encoder to learn fixed-length deep representations. The learnt
representations robustly encode the movement characteristics of
the objects and thus lead to space- and time- invariant clusters.
We evaluate the proposed method on both synthetic and real

data, and observe significant performance improvements over
existing methods.

I. INTRODUCTION

Owing to the rapid growth of GPS-equipped devices and

location-based services, enormous amounts of spatial trajec-

tory data are being collected in different scenarios. Among

various trajectory analysis tasks, trajectory clustering — which

aims at discovering groups of similar trajectories — has

been recognized as one of the most important. Discovering

trajectory clusters can not only reveal the latent characteristics

of the moving objects, but also support a wide spectrum of

high-level applications, such as travel intention inference, mo-

bility pattern mining [1], [2], location prediction and anomaly

detection [3].

A plethora of trajectory clustering techniques have been

proposed [4]. They typically use certain measures to quan-

tify trajectory similarities, and then apply classic clustering

algorithms (e.g., K-means, DBSCAN, spectral clustering).

Popular trajectory similarity measures[5] include DTW (Dy-

namic Time Warping), EDR (Edit Distance on Real sequence)

and LCSS (Longest Common Subsequences). Although these

measures can group trajectories that are similar in a fixed

geographical region and time period, many practical appli-

cations involve trajectories that distribute in different regions

with different lengths and sampling rates. In such applications,

one is often required to find clusters where the within-cluster

similarity appears in different time and space. For example,

the taxis in traffic jams can have similar moving behaviors,

but the traffic jams usually occur in different areas in the

city with different durations. Such spatio-temporal shifts [6]

are common in many scenarios and render current trajectory

clustering algorithms ineffective.

In this work, we revisit the trajectory clustering problem by

developing a method that can detect space- and time- invariant

trajectory clusters. Our method is inspired by the recent

success of recurrent neural networks (RNNs) for handling

sequential data in Speech Recognition and Neural Language

Processing. Given the input trajectories, our goal is to convert

each trajectory into a fixed-length representation that well

encodes the object’s moving behaviors. Once the high-quality

trajectory representations are learnt, one can easily apply any

classic clustering algorithms according to practical needs.

Nevertheless, it is nontrivial to directly apply RNN to the

input trajectories to obtain quality representations because of

the varying qualities and sampling frequencies of the given

trajectories. We find that a naive strategy that considers each

trajectory as a sequence of three-dimensional records (time,

latitude, longitude) leads to dramatically oscillating parameters

and non-convergence in the optimization process of RNNs.

In light of the above issue, we first extract a set of movement

features for each trajectory. Our feature extraction module is

based on a fixed-length sliding window, which scans through

the input trajectory and extracts space- and time- invariant

features of the trajectories. After feature extraction, we con-

vert each trajectory into a feature sequence to describe the

movements of the object and employ a sequence to sequence

auto-encoder to learn fixed-length deep representations of the

objects. The learnt low-dimensional representations robustly

encode different movement characteristics of the objects and

thus lead to high-quality clusters.

In summary, we make the following contributions:

• We study the problem of detecting space- and time-

invariant trajectory clusters. Such a task differs from

previous works in that it can group trajectories collected

in different regions with varying lengths and sampling

rates.

• We employ a sliding-window-based approach to extract

a set of robust movement features, and then apply se-
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quence to sequence auto-encoders to learn fixed-length

representations for the trajectories. To the best of our

knowledge, this is the first study that leverages recurrent

neural networks for the trajectory clustering task.

• We evaluate our method on both synthetic and real-life

data. We find that our method can generate high-quality

clusters on both data sets and largely outperforms existing

methods quantitatively.

The rest of this paper is organized as follows. In Section

II, we review related work. We overview of our method in

Section III and then detail the main steps in Section IV. We

empirically evaluate the proposed method in Section V and

finally conclude in Section VI.

II. RELATED WORKS

In this section, we briefly review the existing approaches for

trajectory clustering, trajectory pattern mining, and sequence

to sequence auto-encoder.

A. Trajectory Clustering

Classic trajectory clustering approaches [4] apply distance-

based or density-based clustering algorithms based on similar-

ity measures for trajectory data [7], such as DTW (Dynamic

Time Warping), EDR (Edit Distance on Real sequence) and

LCSS (Longest Common Subsequences). Lee et al. [8] pro-

posed a framework which first partitioned the each trajectory

into sub-trajectories and then groups sub-trajectories using

density-based clustering method. Tang et al. [9] presented a

travel behavior clustering algorithm, which combined sam-

pling with density-based clustering to deal with the noise in

trajectory data. Li et al. [10] proposed an incremental frame-

work to support online incremental clustering. Besse et al. [4]

performed distance-based trajectory clustering by introducing

a new distance measurement. Kohonen et al.[11][12] devel-

oped SOM (Self-Organizing Maps) and LVQ (Learning Vector

Quantization), which could be used for adaptive trajectory

analysis and clustering. While the aforementioned methods

can cluster trajectories that are similar in a fixed region and

period, they are inapplicable for discovering space- and time-

invariant clusters.

B. Trajectory Pattern Mining

A number of methods have been proposed for mining

different patterns in trajectories. Hung et al. [6] proposed a

trajectory pattern mining framework that extracted frequent

travel patterns and then trajectory routes. Zhang et al. [2]

developed an efficient and robust method for extracting fre-

quent sequential patterns from semantic trajectories. Higgs

et al. [13] proposed a framework for the segmentation and

clustering of car-following trajectories based on state-action

variables. Zhang et al. [14] used the hidden Markov Model

to model the mobility for different groups of users. Liu et al.

[15] introduced a speed-based clustering method to detect taxi

charging fraud behavior. Different from our work that detects

general trajectory clusters, these works detect specific moving

patterns in trajectory data.

C. Sequence to Sequence Auto-encoder

Sequence to sequence auto-encoder was first proposed by

Sutskever et al. [16] for machine translation. Dai et al. [17]

introduced a sequence to sequence auto-encoder and used it

as a “pretraining” algorithm for a later supervised sequence

learning. Recent research has also demonstrated the usefulness

of sequence to sequence auto-encoders for generating fixed-

length representations for videos and sentences. Specifically,

Chung et al. [18] employed it to generate audio vector; Nitish

Srivastava [19] used multilayer Long Short Term Memory

(LSTM) networks to learn representations of video sequences;

Hamid Palangi [20] generated a deep sentence embedding

for information retrieval. However, we are not aware of any

previous works that apply auto-encoders to trajectory data. In

addition, as aforementioned, directly applying auto-encoders

on trajectory data is non-trivial because of the varying sam-

pling frequencies and the noise between continuous records.

III. GENERAL FRAMEWORK

In this section, we first formulate our problem, then we give

an overview of our framework.

A. Problem Formulation

Consider a set of moving objects O = {o1, o2, ..., oL}.

For each object o, its history sequence of GPS records is

given by So = (x1, x2, ..., xM ). Here, each x in S is a

tuple (tx, lx, ax, ox) where tx is the timestamp, lx is a two-

dimensional vector (longitude and latitude) representing the

object’s location, ax is a set of attributes collected by other

sensors (e.g., if the object is a car, ax may include the speed,

turning rate, fuel consumption, etc); and ox is the object ID.

A raw sequence So can be sparse in practice, we

segment it into a set of trajectory sequences TRo =
(TR1, TR2, ..., TRn), defined as follows:

Definition 1: Given So = (x1, x2, ..., xM ) and a

time gap threshold Δt > 0, a subsequence ST
o =

(xi, xi + 1, ..., xi + k) is a trajectory if ST
o satisfies: (1) ∀1 <

j ≤ k, txj
− txj−1

≤ Δt; and (2) there is no subsequence in

So that contain ST
o and also satisfy condition (1).

Figure 1 depicts a simple example of the trajectory gen-

eration process. With So = (x1, x2, x3, x4, x5, x6, x7)) and

Δt = 3hour, we segment the sequence into three trajectories:

TRo = (TR1, TR2, TR3).

Fig. 1. Partition the sparse sequence into trajectories.

By combining the trajectories of all the objects, we obtain

a trajectory set T = {TR1, TR2, ..., TRN}. Our goal is

to generate space- and time- invariant trajectory clusters of
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Fig. 2. Our framework for trajectory clustering.

T . Specifically, based on the objects’ movement patterns, we

need to generate a set of clusters O = {C1, C2, ..., CK}. In

each cluster, the similarity shared by the member trajectories

may appear in different geographical regions and also different

parts of the trajectories.

B. Overview of The Framework

We present the framework for finding space- and time-

invariant trajectory clusters in Figure 2. As shown, the frame-

work is an unsupervised approach with four layers, detailed

as followed.

• Trajectory Preprocessing Layer: The input of this layer

is the GPS record sequences of the moving object. The

sequence is noisy and the temporal gaps between some

record pairs can be very large. In this layer, we remove

the low-quality GPS records and cut the sequence into

trajectories with temporal continuity.

• Moving Behavior Feature Extraction Layer: In this

layer, all the trajectories are processed with a moving

behavior feature extraction algorithm. Based on a slid-

ing window, we transform the trajectory into a feature

sequence.

• Seq2Seq Auto-Encoder Layer: We use a sequence to

sequence auto-encoder to embed each feature sequence to

a fixed-length vector. This vector encodes the movement

pattern of the trajectory.

• Cluster Analysis Layer: Finally, we choose a classic

clustering algorithm based on the practical needs and

cluster the learnt representations into clusters.

IV. METHODOLOGY

In this section, we elaborate the two layers which are key in

our framework: the feature extraction layer and the sequence

to sequence auto-encoder layer.

A. Moving Behavior Feature Extraction

The key idea of the behavior feature extraction is to utilize

a sliding window to traverse the records and extract features in

each window. As shown in Figure 3, with a sliding window, we

aim to obtain space- and time- invariant features to describe

the moving behaviors of the object.

Fig. 3. Moving behavior extraction.

Let Lp and offsetp denote the width and the offset of

the sliding window, respectively. While classic methods often

choose offsetp = Lp, we find that a finer granularity of

offsetp = 1/2×Lp can effectively lead to better performance.

In this way, each record in a trajectory is assigned into two

windows, and most behavior changes are captured. Since the

density of the records is imbalanced, some dummy windows

that contain no records are also introduced, such as W6 in

Figure 4.

Fig. 4. Sliding time windows generation.

Now we describe the detailed feature extraction process in

each sliding window as follows. The moving behavior changes

can be reflected by the differences of the attributes between

two consecutive records. Let us consider a window with R
records. The records in this window are denoted as W =
(x1, x2, ..., xR). Assume the attributes in each record consist

of speed and rate of turn (ROT). The extracted attributes for

the moving behaviors include: time interval Δti = txi
−txi−1

,

change of position Δli = lxi
− lxi−1

, change of speed Δsi =
sxi

− sxi−1
and change of ROT Δri = rxi

− rxi−1
, where i

ranges from 2 to R. In this way, a window with R records has

R− 1 the moving behavior attributes (Δl,Δs,Δr).
Even if these are no attributes in the raw record, the speed

and ROT also can still be calculated according to location

information. As shown in Figure 5, consider a trajectory with

T records TR = (x1, x2...xT ). We only have the timestamp
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Fig. 5. Attributes completely.

and location coordinates in each record and denote them as

(t, lat, lon). For the first record of the trajectory x1, we set

sx1
= 0 and rx1

= 0. Then we can calculate the speed and

ROT of each record by:

sxi
=

√
(latxi

− latxi−1
)
2
+ (lonxi

− lonxi−1
)
2

txi
− txi−1

x (1)

and

rxi
= arctan

lonxi
− lonxi−1

latxi
− latxi−1

(2)

where i range from 2 to T . After this procedure, the speed

and ROT attributes can be derived for each trajectory.

Fig. 6. The generation of moving behavior sequence.

If R ≥ 1, for each i from 1 to R, we compute Δti, Δli,
Δsi and Δri. We further compute the change rate of these

features fi = (fΔli , fΔsi , fΔri) in which fΔli = Δli/Δti,
fΔsi = Δsi and fΔri = Δri. For two consecutive records,

fΔli stands for the average speed, fΔsi stands for the

change of speeds and fΔri stands for the change of ROTs.

After computing these features in each pair, we get a

feature set f = {f1, f2, ..., fR}. We use the statistic of f to

generate the features in the sliding window. Here, six statistics

{mean,max, 75%quantile, 50%quantile, 25%quantile,min}
are selected.

In summary, the moving behavior features of each window

b has 3× 6 = 18 dimensions that consist of

{fΔl, fΔs, fΔr}×

{mean,max, 75%quantile, 50%quantile, 25%quantile,min}

If R = 0, we skip this window. Algorithm 1 shows the

generation procedure of moving behavior feature sequence.

For each trajectory in T , we generate the moving behavior

sequence for it. Then, we put these sequences in a set and

denote it as BS = {BTR1
, BTR2

, ..., BTRN
}. Finally, we

normalize each feature to prepare for the next sequence to

sequence auto-encoder layer.

Algorithm 1 Behavior Feature Extraction Algorithm

Input:

GPS records for a trajectory TR
Output:

The behavior sequence of trajectory TR, BTR

1: Initialize BTR = []
2: windows = sliding windows(TR)
3: for each window W in windows do

4: if len(W.records) ≥ 1 then

5: Initialize FW = []
6: for each record ri in W.records do

7: ri−1 = find pre(ri)
8: Fi = compute features(ri, ri−1)
9: FW .add(Fi)

10: end for

11: BW = generate behavior(FW )
12: BTR.add(BW )
13: end if

14: end for

15: return BTR

Fig. 7. Architecture of sequence to sequence auto-encoder.

B. LSTM Seq2Seq Auto-encoder

In this section, we describe a model that uses LSTM (Long

Short Term Memory) to reconstruct the moving behavior

sequence and generate a fixed-length deep representation of

the trajectory[21].

RNNs are neural networks whose hidden units form a

directed cycle and it is suitable for variable length inputs.

For a given behavior sequence BTRi
= (b1, b2, ..., bT ) where

i ∈ [1, N ], RNNs update its hidden state ht according to the

current input bt and the previous ht−1. The hidden state ht

acts as an internal memory at time t that enables the network

to capture dynamic temporal information. At time t the RNN

is updated by

ht = f(ht−1, bt) (3)

where f is the activation function.

As the vanilla RNN has difficulty in learning long-term

dependencies in practice[22], we use LSTM to overcome this

shortage, which has been found successful in a number of

applications [16][17][18][23][19][20].

The LSTM auto-encoder model is composed of two RNNs

- the encoder LSTM is shown in the left part of Figure 7 and

the decoder LSTM is illustrated in the right part. The input of
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the model is a behavior sequence BTRi
. The encoder LSTM

reads the input sequence sequentially and the hidden state ht

is updated accordingly. The encoder LSTM is updated by:

ht = fLSTM (ht−1, bt) (4)

After the last bT is processed, the hidden state hT is used as

the representation for the whole sequence. Then, the decoder

first generates the output c1 by taking hT as the initialized

hidden state of the decoder LSTM, and then further generate

(c2, c3, ..., cT ). The decoder LSTM is updated by:

hd
t = fLSTM (hd

t−1, ct−1, hT ) (5)

The target of the decoder is to reconstruct the input sequence

BTRi
= (b1, b2, ..., bT ). In other words, the encoder LSTM

and decoder LSTM are trained together by minimizing the

reconstruction error, measured by the general mean squared

error
∑T

t=1
‖ bt − ct ‖

2
. As the input sequence is taken as

the learning target, the training process does not need any

labeled data. The fixed-length moving behavior vector z is

a meaningful representation for the input behavior sequence

BTRi
, because the hole input sequence can be reconstructed

from z by the LSTM decoder.

After this procedure, we get the moving behavior vector set

Z = {zTR1
, zTR2

, ..., zTRN}. Then, we feed them in a classic

clustering algorithm, such as K-means, and obtain the clusters.

V. EXPERIMENT

In this section, we empirically evaluate our method. We

first introduce the datasets of the experiments and describe the

compared methods. Then, we present the experiment results.

A. Dataset & Compared Methods

1) Dataset and Settings: We use both synthetic and real

datasets to test the effectiveness of the framework. For the syn-

thetic dataset, we simulated 3000 trajectories including three

kinds of movement patterns {Straight, Circling,Bending}.

Each pattern has 1000 trajectories. The sampling frequency

and time length of each trajectory were generated randomly

from 2500 seconds to 5000 seconds. After generating the tra-

jectories, we computed the attributes of location with equation

(1) and (2). In addition, we added Gaussian noise in the

location generation process. Part of the synthetic dataset is

shown in Figure 8.

The real dataset corresponds to 200 vessels in China,

containing 50 cargo ships, 50 fishing ships, 50 oil ships and 50

passenger ships. The vessel motion data is collected by AIS

(Automatic Identification System). AIS[24] is one of the most

important ways for maritime domain awareness. AIS messages

can be divided into dynamic messages and static messages.

Dynamic messages report the dynamic situation of the vessel

which includes the time, position (longitude, latitude), COG

(course over ground), SOG (speed over ground) and heading.

Static messages includes type, name and size. The record time

of these vessel ranges from 2016.5 to 2016.6. There are totally

5,924,142 records in this dataset. After trajectory partition, we

generated 4700 trajectories.

Fig. 8. Part of the synthetic data which consist of 10 straight trajectories, 10
circle trajectories and 10 bending trajectories.

We implemented the framework with Python and Tensor-

Flow. All the experiments were performed on a server with

Intel Xeon CPU 2.10GHz. The data and code are publicly

available.

2) Compared Methods: We compare our method with four

trajectory clustering methods based on different measures,

including LCSS, DTW, EDR and Hausdorff distance. All

the distance functions can handle trajectories with different

lengths. LCSS, DTW and EDR are warping-based distance

functions [5] which aim to solve the time shifting problem.

They enable matching locations from different trajectories with

different indexes. In contrast, Hausdorff distance is shape-

based distance. For each measure, we choose K-Medoids

(KM) as the clustering algorithm. On the synthetic data, as

the number of moving behavior patterns are known, we set

the number of clusters to 3. For the real-life data, we tune the

number of clusters and analyze the results to choose the best

one.

We measure the cluster results in precision, recall and

accuracy[25]. For each method, we first compute the best

match between the clustering results and the groundtruth

movement patterns. Then, for each movement pattern, we

measure the precision and recall. The precision and recall are

computed as: Precision = TP
TP+FP

and Recall = TP
TP+FN

,

respectively. Here, TP (Ture Positive), stands for the number

of trajectories that match the movement pattern. Finally, we

measure the accuracy of each method, computed as follows:

Accuracy = Sum of All TPs / Number of Trajectories.

B. Results on Synthetic Dataset

For the synthetic data, we set the sliding window to 600

seconds and the offset of the window to 300 seconds. For

the sequence to sequence auto-encoder procedure, we set the

0https://github.com/yaodi833/trajectory2vec.git
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learning rate to 0.0001 and the number of iterations to 1000.

We also set the size for the LSTM cell to 100. We choose

K-means algorithm to generate the trajectory clusters. EDR

and LCSS need a threshold of distance to determine whether

two records are matching. After tuning, we set the threshold to

100 meters. The clustering performance of different methods

is shown in Table 1.

TABLE I
CLUSTERING PERFORMANCE ON SYNTHETIC DATA.

Straight Circling Bending Accuacy

EDR + KM 0.55/0.62 0.60/0.67 0.79/0.59 61.83%

LCSS + KM 0.54/0.46 0.56/0.75 0.50/0.40 53.6%

DTW + KM 0.45/0.54 0.51/0.45 0.49/0.44 47.73%

Hausdorff + KM 0.34/0.37 0.33/0.34 0.40/0.35 35.5%

Our Method 0.88/0.97 0.90/0.87 0.85/0.78 87.5%

This table shows the cluster result of synthetic dataset. The two numbers in
each cell stand for Precision / Recall accordingly.

The results show that our method can extract movement

patterns much better than EDR, LCSS, Hausdorff and DTW.

Using our approach, the trajectories with similar moving

behaviors are clustered together, even if the similarity occur in

different regions and time periods. Our method has improved

the accuracy by more than 20% than other methods.

C. Results on Vessel Motion Dataset

We perform two tasks on this dataset. The first one is the

standard trajectory clustering task. In this task, we utilize

our framework to generate clusters that have similar moving

behavior, and then analyze the meaning of trajectories in them.

The second one is vessel type analysis. After clustering, we

examine whether the vessels having the same type are grouped

into the same cluster or not and measure the accuracies.

Trajectory Clustering Task: Utilizing our framework,

trajectory moving behavior vectors are generated. Most of the

parameters used in this procedure are the same as synthetic

dataset except the number of iterations and hidden states.

Because real trajectories are usually much longer, we set the

number of iterations to 3000 and the size of the hidden layer

to 300. We use K-means to generate the clusters for the Z set.

As we do not know the number of ground-truth clusters on

the real data, we describe how we choose the value of K as

follows. We increase the number of K from 3 to 100 with

step-size 5. For each K, we calculate the sum of distances

from samples to their nearest centroid and denoted it as Ek.

The result is shown in Figure 9. The K value corresponding

to the elbow point can be found in Figure 9.

As shown in Figure 9, we choose K = 33, extracting 33

clusters for the 4700 trajectories. Some of the cluster results

are shown in Figure 10 and Figure 11. The blue lines stand

for the trajectories, the yellow points stand for the start point

and the red points stand for the end point. The first cluster that

contains 117 trajectories is depicted in Figure 10. As shown,

most of trajectories are distributed in tourist city. Besides, most

of them are the short round trips. We find that the trajectories

Fig. 9. ELBOW Method to Choose K . Ek with suitable K value should be
the elbow point in this figure. Here, we choose K = 33.

Fig. 10. Trajectories in Cluster 1. The blue lines stand for the trajectories;
the yellow points stand for the start point and the red points stand for the
end point. Most of trajectories in this cluster are short round trips between
tourist cities and generated by passenger ships.

in this cluster are mostly generated from short passenger ship

with high probability. The cluster in Figure 11 contains 180

trajectories. We can easily find that most of the trajectories are

distributed in the inland river and the trajectories are sparser

and longer than those in the first cluster. We examined the
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Fig. 11. Trajectories in Cluster 2. The blue lines stand for the trajectories;
the yellow points stand for the start point and the red points stand for the end
point. Most trajectories in this cluster are distributed in inland rivers and
it is sparser and longer than Cluster 1. These trajectories are generated by
inland cargo ships.

member trajectories in this cluster, and find that most of them

are generated from inland cargo ships.

The above experiments show that the clusters generated by

our approach can capture the movement patterns of the objects

in different time and space. The trajectories in each cluster

are meaningful and we can easily interpret each cluster by

analyzing the typical trajectories in them.

Vessel Type Analysis Task: Prior research has shown that

different vessel types have different behavior patterns[26][27].

In this task, we try to recognize the vessel type by utilizing

the trajectory clustering.

We took the trajectory moving behavior vectors of an vessel

as the input of encoder and minimized the mean squared error

between encoder input and decoder output. Subsequently, we

obtained the moving behavior vector of the vessel. Based

on these vessel moving behavior vectors, we utilized our

clustering algorithm to get the vessel clusters. Ideally, the

vessels in different clusters should have different vessel types.

The clustering accuracy results are shown in Table 2.

Although our approach is totally unsupervised, we still

observe quite good vessel typing accuracies. The overall

accuracy for vessel type recognition is about 78%. Especially,

the precision / and recall for the oil ship and the passenger ship

are 0.67/1.0 and 0.91/0.88, respectively. However, the result

of cargo ship is only 0.7/0.52. We consulted the experts in

the shipping field for this phenomenon. The reason is that

cargo ships contain many subtypes such as dry cargo ship,

TABLE II
VESSEL TYPE CLUSTERING RESULTS

Passenger Fishing Cargo Oil

Total Number 50 50 50 50

Precision 44/48=0.91 35/41=0.85 26/37=0.7 50/74=0.67

Recall 44/50=0.88 35/50=0.7 26/50=0.52 50/50=1.0

Overall Accuracy: (44+35+26+50)/200 = 0.78

wet cargo ship, and roll-on-roll-off ship. These different types

make a great difference in the moving behavior patterns.

However, if such subtype information is available in the

training process, the cluster performance is expected to have

better improvements.

In general, this set of experiments show that different

vessel types have different moving behavior patterns, and our

framework is good at capturing such patterns.

VI. CONCLUSION

In this paper, we proposed a novel framework for trajectory

clustering with similar movement patterns. A moving behavior

feature extraction algorithm was proposed to extract moving

behavior features that captured space- and time- invariant

characteristics of trajectories. Then, the sequence to sequence

auto-encoder was utilized to generate a deep representation

of moving behavior sequence and address the spatio-temporal

shifts problem. We have demonstrated the effectiveness of our

framework on both synthetic and real datasets. Experimental

results show that our method has a higher accuracy than other

trajectories clustering methods on synthetic data. Additionally,

it can get useful trajectory clusters and accurately detect object

groups for the real data.
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