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Abstract—Network embedding aims at learning the latent
representations of nodes while preserving the complex structure
of the underlying graph. Real-world networks are usually related
with each other via common nodes, the so-called multiplex
network. To make the data mining work on the multiplex
network more actionable, it become urgent and essential to
transform it into low-dimension vector space. Recently, several
works have been proposed to leverage the complementary in-
formation for embedding. However, they suffer from sacrificing
distinct properties of the counterparts in different layers, as they
preserve much noise information into embedding vectors. In this
paper, we propose a Noise-Aware Network Embedding approach
for Multiplex Network, namely NANE. Unlike previous works,
NANE considers the roles of an identical node in different layers,
and adopts a more robust and flexible strategy to rationally
integrate the cross-layer information while keeping the unique
characteristic of each layer. We perform extensive evaluations on
several real-world datasets. The experimental results demonstrate
that our NANE can achieve better performance on link prediction
task and significantly outperform previous methods especially in
noisy multiplex network scenarios.

I. INTRODUCTION

In recent years, the rise of big data has generated a large
volume of network data, such as social networks, citation net-
works, biological networks, etc. Accordingly, there has been a
wealth of research on mining the rich information in networks,
including link prediction [1] and vertex classification [2].
As a fundamental component in these downstream network
analysis, the representation of the node plays a critical role in
network mining. Currently, there has been a tremendous surge
of research interest in learning the node representations in a
network, i.e., network embedding [3]–[6].

Despite the gratifying results achieved, previous methods
are mainly designed for the single-layer network. However,
real-world networks are usually associated by sharing the
same set of nodes [7], i.e., multiplex network. The multiplex
network is referred to contain multiple types of relationships
among nodes, and each layer depicts one topological network
structure corresponding to a particular relationship. Multiplex
networks are common to be observed in real-life. For ex-
ample, people are usually involved in several online social
platforms, such as WeChat, Facebook, Twitter, and the same
set of the people can be expressed as a multiplex network,
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where each layer illustrates one type of the social relationship
corresponding to the platform. Another similar example can
be observed in bioinformatics, such as the multiple genetic
and protein interactions network, where each layer represents
one type of genetic interaction. In recent years, many works
have been proposed to mine the rich information in multiplex
networks, including network fusion [8], [9], cross-network
recommendation [10], etc. As the structures of the layers
are related, it is necessary to incorporate the information
across multiple layers to improve the node embedding vectors.
However, previous works only concern one type of interaction
between nodes [4]–[6], so they fail to preserve the correlations
among the layers.

To tackle this problem, several literatures have been pro-
posed recently [11]–[15]. However, there still exist some
important issues which need further concern. First, most of
them [11]–[13] hold a complementary assumption, which
indicates that the structures of the layers are similar, and the
edges are complementary among the layers. Nevertheless, the
related layers can show quite diverse structures due to the
differences in their semantic meanings, and this assumption
can be easily violated in many scenarios [16], [17]. Second,
previous works consider all the cross-layer information is
useful while ignoring the potential noise in this information.
For example, the surroundings of a person in a professional
network may become noise information for the same person
in a friend network. Therefore, preserving this structural
noise can inevitably sacrifice the distinctive properties of the
identical node in different layers.

For solving these problems, we, in this paper, rethink
how to utilize the cross-layer information more rationally
in a fine-grained perspective. We thus propose a Noise-
Aware Network Embedding approach for Multiplex Network,
namely NANE. The core idea of NANE is to measure the
confidence level of an extra edge from the other layers by
comparing the two nodes’ roles between the layers. NANE has
two attractive characters: (i) NANE considers more general
scenario, where the layers in the multiplex network can be
(un)directed, (un)weighted or even uncompleted, which means
some nodes in a layer may not have corresponding nodes in
other layers. (ii) NANE is more flexible and has stronger noise
immunity compared to existing works, because our NANE can
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reasonably integrate the complementary information among
the layers. We summarize our contributions as follows:
• We propose a noise-aware network embedding method

for the multiplex network (NANE), which rationally
integrates the cross-layer information of a given multiplex
network while preserving the distinctive properties of
each layer to boost the quality of node embedding.

• NANE can filter out the potential noise as much as
possible by considering the roles of the identical node
in different layers. Compared to existing methods, our
NANE is more flexible as well as anti-noise, also appro-
priate for the multiple layers with diverse structures.

• Extensive experiments show that our NANE significantly
outperforms other baselines, i.e., achieve 5% improve-
ment with PierreAuger dataset on link prediction task.
Furthermore, NANE can achieve 5% to 15% improve-
ment with all noisy multiplex networks compared to
existing multiplex network embedding methods.

We organize the remains of this paper as follows. Section
2 states the problems of multiplex network embedding, and
investigate the inherent vulnerabilities of previous works. We
formally describe our NANE in Section 3 and then validate
our approach by analyzing extensive experiments in Section
4. We present related work in Section 5 and finally conclude
our work in Section 6.

II. PROBLEM STATEMENT

Multiplex network embedding aims at mapping multiple
types of related layers into continuous latent space, which ben-
efits a wide range of multiplex network mining tasks. Previous
single-layer network embedding methods cannot work for
the multiplex network, as they only consider the correlations
among nodes in one perspective, ignoring the relationships
among different layers. Therefore, recent works [11]–[15] have
been proposed to handle the representation learning problem
on the multiplex network. However, there still exist two facets
of vulnerabilities:

(i) Most of the previous works [11]–[14] make a comple-
mentary assumption, which indicates that the structures
of the layers are similar and the edges are complementary
across the layers. However, this assumption exists vulner-
ability and can be easily offended in practice. For exam-
ple, in bioinformatics, different types of genetic interac-
tions can construct quite diverse network structures [17].
Another similar example can also be found in online
social network sites [16], where users’ behavior may
be divergent and platform dependent, making different
social platforms show various connection relationships.

(ii) Previous works use all of the cross-layer information
but ignore the potential noise in the information, which
sacrifices the quality of the learned embedding vectors.
Fig. 1 shows a toy example with three layers. According
to previous works, layer L1 can provide an extra infor-
mation for the other two layers that there can be an edge
ev1,v2 in layers L2 and L3 because the two nodes have

Local-Layer Information

Cross-Layer Information

Fig. 1. Left: A toy example of a multiplex network with three layers. Right:
The biased learning of NANE on layer L3. The parameter α controls the
balance of learning from local-layer information and cross-layer information.
The value c in cross-layer information denotes the confident level of each
edge.

been connected in L1. However, it is unreasonable in
this example. Considering the two nodes v1 and v2 in
layer L2, each of them has a similar local structure with
its counterpart in layer L1, so it is natural to infer that
there can be a potential edge ev1,v2 in L2. But we may
not intuitively get the same conclusion for layer L3, as
the two nodes are both in separate communities with new
neighbors. Therefore, in this case, even if they have been
connected in layer L1, we still cannot infer that they will
have interaction in L3. So the cross-layer information of
edge ev1,v2 from layer L1 is useful for L2, but can be the
noise if we incorporate it into L3. Previous works ignore
this critical issue, so they can bring excessive noise
into node embedding vectors, sacrificing the distinctive
properties of the identical nodes in different layers.

There are two challenges to tackle the issues above: First,
how to determine if the information from other layers is the
complementary information or a noise; Second, how to balance
the preference of preserving information from local layer
and cross-layer. Thus, we propose a Noise-Aware Network
Embedding method NANE. Unlike previous works, NANE
holds such an assumption: an edge in a layer can be the
complementary information for another layer if the two nodes
take similar roles between the layers, where the role of a
node is determined by its local structure. This assumption is
very intuitive and interpretable, i.e., if a node plays similar
roles in two different layers, its structural information in one
layer will be useful to the other. Holding this assumption,
NANE can make rational use of the cross-layer information in
a more flexible and robust way, by comparing the roles of the
counterparts to filter out the noise information and controlling
the tendency of learning from local-layer or cross-layer.

III. MULTIPLEX NETWORK EMBEDDING

In this section, we first define some concepts and propose
the notations used in this paper. After that, we formally
illustrate our method.

A. Problem Formulation

In this paper, we only consider the network structure of each
layer. We define a multiplex network as follow:
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Definition 1. Multiplex Network is a multi-layer network
therein all layers share the same set of nodes. To be more
general, we assume that each layer can be (un)directed,
(un)weighted or even uncompleted, which means nodes in
a given layer can have no counterpart in other layers. We
define a multiplex network as G = {L1, ..., Li, ..., Ln}, where
Li = (V,Ei,W i) denotes the i-th layer in G and n is the
number of layers. V is the set of nodes of whole network G.
As each layer Li may not contain all the nodes in V , we
assume the nodes that do not exist in layer Li as the isolated
nodes. Ei denotes the set of edges in layer Li and W i denotes
the weight of each edge. We use Gi to represent the adjacency
matrix of layer Li, where each entry in Gi denotes the weight
of an edge. For concise, we also use u,v,z to denote nodes.

Definition 2. Cross-Layer Information. For each given layer
Li in a multiplex network G, the structural information from
this layer is called the local-layer information, while the
information from other layers is the cross-layer information
for Li, which we also call the extra information for Li.

Definition 3. Noise Information. The noise information for
each layer Li is referred as the redundant or unreasonable
information from cross-layer information, e.g. the edge ev1,v2

from layer L1 for layer L3 in Fig. 1.

Definition 4. Local Structure. The local structure of a node
v contains its surrounding nodes, e.g. nodes reachable in K-
hop, and the connections among them.

Multiplex network embedding aims at learning the latent
representation for each node in each layer, preserving both
local-layer information and the cross-layer information of
counterparts.

B. NANE: Noise-Aware Network Embedding for Multiplex
Network

The core of NANE is to integrate the cross-layer information
while filtering out the noise edges. Depend on the assumption
mentioned above, NANE judges whether the extra information
of an edge eu,v from other layers is a noise by considering
the local structures of the two nodes u, v in different layers.
So the first step in NANE is to calculate the similarities of
the counterparts and give the confidence level of each extra
information of edge from cross-layer information.

1) Measuring the Similarity of Counterpart: NANE mea-
sures the local structural similarity between a node and its
counterparts by comparing a K-step context vector, which
reflects the proximity between a node and its surroundings
reachable within K steps in a layer. Considering the adjacency
matrix Gi of i-th layer Li, if there is an edge between node u
and v in Li then Gi

u,v > 0, otherwise Gi
u,v = 0. We first

calculate the following diagonal matrix Di for each layer,
which is known as the degree matrix of the adjacency matrix
Gi,

Di = diag(di), (1)

where di is the sum of each row in Gi and each entry diu is:

diu =
∑
z

Gi
uz. (2)

Then we get the row-normalized adjacency matrix of i-th
layer as follow:

Ai = (Di)−1Gi, (3)

where each entry Ai
u,v can be regarded as the probability of a

transition from u to v in one step, called the 1-step transition
matrix of layer Li.

We can then define the k-step transition matrix as follow:

(Ai)k = Ai...Ai︸ ︷︷ ︸
k

. (4)

For each node u in layer Li, the closer a node v is to u, the
more important this node v is to u. Therefore, we can calculate
the K-step context matrix through a weighted average as
follows:

Ci =
1

K

K∑
k=1

(Ai)k

k
. (5)

The u-th row in Ci is called the K-step context vector of node
u, which denotes the proximity between u and each other node
in Li, and can reflect the role of node u in this layer. To remove
the influence of the center node itself, we set the diagonal
entries in Ci to 0. Therefore, we can use this to measure the
similarities of the counterparts in different layers. In this work,
we intuitively take cosine similarity to calculate the structural
similarity of each common node u between layers Li and Lj

as :
s(i,j)u = cos(Ci

u,:, C
j
u,:), (6)

It is obvious that if node u takes similar role in Li and Lj ,
the s

(i,j)
u will tend to be 1. Note that, the K-step context

vector of each isolated node is a zero vector, so the problem
of uncompleted layer do not affect the calculation of Equation
(6). We thus can give the confidence level of each extra edge
eu,v from layer Lj to layer Li as:

c(i,j)u,v = s(i,j)u · s(i,j)v , (7)

and for each extra edge eu,v from other layers, NANE records
the biggest confidence level for layer Li:

ciu,v = max({c(i,j)u,v , j ∈ {1, 2, · · · , n}, j 6= i}). (8)

2) Noise-Aware Network Embedding: As illustrated in Fig-
ure 1, for each layer Li, NANE takes a biased learning
between the local-layer information of layer Li and the cross-
layer information from other layers. In NANE, a hyper-
parameter α is used to balance the information from the two
parts, and a biased random walk is performed on each layer
Li: considering a random walk now resides at node u, the
transition probability for it to travel to the next node v can be
defined as:

π(u, v) =

{
α · wi

u,v if eu,v ∈ Ei

(1− α) · ciu,v if eu,v ∈ E
⋂
eu,v /∈ Ei,

(9)
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TABLE I
STATISTICS OF DATASETS

Dataset AM-LK SacchCere ArXiv PierreAuger

# layers 2 7 13 16
# nodes 45,732 6,571 14,489 514
# edges 218,594 282,755 59,026 7,153

where the weight wi
u,v of each edge is normalized. Parameter

α controls the likelihood of traveling through an edge in the
local layer or other layers. A larger α make NANE tend to
explore in the local layer, while a smaller one encourages the
cross-layer exploration. For the local-layer exploration, at each
step, the random walk is simply biased towards the weight
of edges. For the cross-layer exploration, the random walk
tends to travel through the edge with a high confidence level.
Therefore, this flexible sampling strategy benefits the model
to preserve useful cross-layer information and avoid potential
noise edges as much as possible. To speed up the bias random
walk across the layers, we adopt Alias sampling strategy in [6].

3) Optimization: We have obtained sets of node sequences
on each layer and then we can perform the Skip-Gram algo-
rithm over the sequences to learn embeddings. For a random
walk on i-th layer Li, we take w as half of the window size.
Thus, in each window nij−w, n

i
j−w+1, · · · , nij+w−1, n

i
j+w,

where nij denotes the j-th node in this sequence, our objective
is to minimize the following negative log-likelihood:

−
k=j+c∏
k=j−c

logP (nik|nij), (10)

where P (nik|nij) is defined as the conditional probability of
node nik generated by node nij as:

P (nik|nij) =
exp(vi

nk
· vi

nj
)∑

nz
exp(vi

nz
· vi

nj
)
, (11)

where vi
nj

represents the node embedding vector of node
nij . To speed up the training process, following [18], we use
negative sampling to approximate the objective function as:

E = −logσ(vi
nk
· vi

nj
)−

∑
ni
z∈Nni

j

logσ(−vi
nz
· vi

nj
), (12)

where σ(x) = 1/(1 + exp(x)) is the sigmoid function and
Nni

j
is set of randomly negative nodes for node nij in layer

Li.

IV. EXPERIMENT EVALUATION

In this section, we conduct extensive experiments to evaluate
our method. Previous works on multiplex network embedding
verify the effectiveness of embedding vectors mainly using
link prediction task while the work [13] also test the effec-
tiveness via multi-label classification. The noise in cross-layer
information has a great influence on link prediction while
has a relatively small impact on classification task, so in
this work we verify the effectiveness of our method on link

ArXiv

AM-LK

SacchCere

PierreAuger

Fig. 2. An illustration of the similarity between layers. Each grid denotes the
global structural similarity between each two layers in the dataset. The darker
the color, the more similar the two layers are in structure.

prediction task. Specifically, we compare with several state-
of-art methods on four real-world networks in both normal
environment and noisy scenarios. We first explain the details of
datasets and baseline methods. Then we show the experimental
results and conduct a parameter study of our NANE.

A. Experiment Configuration

1) Data Set: We perform experiments on four real-world
networks from academic, bioinformatics, and online social
platform and summarize the statistics of the datasets in Table I.
We also present the structural similarities between each pair of
layers in Fig. 2 by comparing the common neighbors reachable
in three steps of the counterparts. We detail the datasets as
follows:

ArnetMiner-Linkedin. ArnetMiner1 [19] is an expertise
search and mining service for the academic community.
Linkedin2 is a world’s professional network where users can
maintain their profile page and connections. We extract a
subgraph from [20] where the links in ArnetMiner represent
the co-author relationships and the links in Linkedin denote
that if two profiles of users are co-viewed by others. This
network contains 45,732 nodes, 218,594 edges.

SacchCere3 [21], [22] is a subset of BioGRID, which is
a public database that archives and disseminates genetic and
protein interaction data from humans and model organisms.
It contains 6,571 nodes, 282,755 connections, and 7 layers,
where each layer represents one type of genetic interaction.

ArXiv3 [23] consists of the layers corresponding to different
ArXiv categories. There are 14,489 nodes, 59,026 coauthor-
ship connections, and 13 layers. The weight of each connection
is the times of cooperation between the two authors.

PierreAuger3 [24] contains 16 layers corresponding to dif-
ferent working tasks within the Pierre Auger Collaboration.
There are 514 nodes and 7,153 coauthorship connections.

2) Baseline: We compare NANE with five competitive
baselines, which can be categorized into two groups: single-
layer network based methods and multiplex network based
methods.

1https://www.aminer.cn/
2https://www.linkedin.com
3https://comunelab.fbk.eu/data.php

IJCNN 2019. International Joint Conference on Neural Networks. Budapest, Hungary. 14-19 July 2019

paper N-19593.pdf- 4 -

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on June 01,2022 at 01:19:07 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
RESULT OF LINK PRECTION.

Method DeepWalk LINE PMNE MTNE MELL NANE
ArXiv 96.12 94.75 98.24 97.93 98.84 99.18
SacchCere 78.29 68.87 81.35 81.19 80.21 83.10
PierreAuger 81.01 74.25 78.81 79.87 81.83 87.11
AM-LK 89.56 73.97 88.67 87.27 87.54 93.25

Single-layer network based methods contain two recent
works for embedding nodes in each layer separately:

DeepWalk [4] is a typical network embedding method that
learns vertex representations based on the network structure.
It performs a random walk on the network to obtain vertex se-
quences and conducts Skip-Gram model to train the sequences.

LINE [6] is another model which aims at learning node
embeddings in large-scale networks. It minimizes a loss func-
tion to preserve both first-order and second-order proximity
between nodes.

Multiplex network based methods contain three baselines
which not only consider the local layer information but the
cross-layer information:

PMNE [11] proposes three methods to obtain one overall
embedding for each node. In this experiment, we compare with
its final Co-Analysis method, which performs a biased random
walk across the layers and conducts skip-gram model to train
the node sequences.

MTNE [13] proposes a family of algorithms to learn multi-
task network embedding. We compare with MTNE-C, which
builds a bridge among different layers by sharing a common
embedding among the counterparts.

MELL [14] is a multi-layer embedding model which si-
multaneously learns the node embedding vectors and a layer
embedding for each layer.

We perform a five-fold cross-validation on each dataset. We
randomly sample an unconnected node pair as a negative edge
for each positive edge in each test set and use both of them for
testing. Following previous works, we here adopt a standard
evaluation metric ROC-AUC [25] for each layer and present
the average score. Furtherly, to verify the robustness of models
in the face of noisy networks, we randomly add noise edges
which do not exist in any layer into training set and also
calculate the average AUC score. For fair comparison, we set
the dimension d=100 for all methods.

B. Parameter Settings

The parameters of all the baselines are set to the best settings
as they reported. For Deepwalk, we set walks per vertex to
20, window size to 10 and walk length to 80. For LINE, we
employ both first-order and second-order proximity and obtain
representations via concatenation, and we set the number of
negative samples to 5. For PMNE, we follow their default
settings {α, p, q}={0.5, 0.5, 0.5}. For MTNE, we follow the
default settings where the regularization coefficients are set
as 1.0. For MELL, the objective function of it is applicable
to the network where each layer has the same number of

nodes, which is violated in our datasets. This makes it show
poor performance in our experiments. Therefore, we modify
its regularization to make it suitable for our datasets. We set
{k, λ, β, γ}={4, 1, 1, 1}

For our NANE, we set α = 0.8 for datasets SacchCere
and PierreAuger, α = 0.4 for ArXiv and 0.6 for ArnetMiner-
Linkedin. To accelerate the training process, we set the number
of negative sample to 1. For the other parameters in our
method, we set the same as in DeepWalk.

C. Performance Evaluation

We first compare our NANE with all the baselines on link
prediction task. After that, we perform another set of exper-
iments to analyze the influence of noise on each multiplex
network embedding model.

1) Link Predition: We present the results of link prediction
in Table II. Our NANE continually outperforms all baselines
methods significantly. Taking PierreAuger as an example, we
can even gain 5% improvement compared to all the baselines.
This observation illustrates the effectiveness of our NANE
on preserving cross-layer information. Moreover, we observe
that the model designed for the single-layer network can even
achieve better results than the multiplex network embedding
methods, e.g., DeepWalk can achieve better performance than
the other three multi-layer embedding methods on dataset
ArnetMiner-Linkedin. This is mainly because the layers of
this dataset tend to show diverse global structures, which
violates the complementary assumption, making these multi-
layer embedding methods preserve much noise information
into node embedding vectors. Therefore, this phenomenon also
indicates that not all the cross-layer information is essential to
be preserved. Unlike previous works, our NANE can measure
the confidence level of each extra information, learning from
the local layer information while preserving useful cross-layer
information. Thus, NANE can achieve much better results
than all the baselines and be more flexible and practical than
previous works on these complex datasets.

2) Influence of Noise: We perform a set of experiments
to explore the influence of structural noise on each multiplex
network embedding model and report the results in Fig. 3.
We first add different level of noise edges into training sets
and calculate the average AUC score of link prediction. For
each positive edge in test set, we then replace its corresponding
negative edge in AUC calculation with an edge of other layers
from the set of the added noise edges, i.e. -ne in Fig. 3. For
fair comparison, we use the same hyper-parameter in this set
of experiments. Upon the experimental results, we have the
following observations:

(i) The performance of all methods decreases with the
increase of noise level. This demonstrates that the struc-
tural noise has an influence on the quality of the learned
embeddings of each model designed for multiplex net-
works. However, our NANE can produce the stable
performance with the increase of the noise level and
achieves 5% to 15% improvement than other methods
on all datasets.

Noise-Aware Network Embedding for Multiplex Network
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(b) SacchCere (c) PierreAuger (d) ArnetMiner-Linkedin(a) ArXiv

Fig. 3. The results of link prediction with different levels of noise. The lines of -ne denote the results of replacing the randomly sampled edges in AUC
calculation with the added noise edges. (This set of figures is best viewed in color.)

TABLE III
PARAMETER STUDY OF α.

Dataset 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ArXiv 98.27 98.37 98.40 99.18 98.91 98.65 98.54 98.44 97.22
SacchCere 75.28 77.99 80.04 80.89 81.48 82.55 82.63 83.10 80.65

PierreAuger 72.39 76.87 77.44 79.04 80.14 82.93 84.72 87.11 84.14
AM-LK 91.79 92.13 92.33 92.54 92.62 93.25 92.69 91.14 90.84

(ii) The performance of the other three methods drops
sharply when we take the noise edges as negative edges
for AUC calculation. This indicates that the learned
vectors preserve much noise from the cross-layer in-
formation, losing the specific properties of a node in
its selected layer. For PMNE, as it merges multiple
layers into one overall embeddings vectors, it inevitably
keeps much noise and reduces the quality of learned
embedding. Thus it shows poor performance in noisy
scenarios. For MTNE and MELL, although they can
preserve much distinguish information for each layer,
they integrate all the cross-layer structural information
while failing to judge which is essential. This makes
them also preserve many noisy edges from other layers
and cannot achieve better performance. Unlike these
methods, the performance of our NANE declines slightly
even using the noise edges for AUC calculation. This
outperformance demonstrates that our NANE can learn
the complementary information while filtering out the
unnecessary or noisy cross-layer information, which is
practical and robust in real-life multi-layer network ap-
plications.

To summarize, on all datasets, our NANE can always
achieve better performance and outperform all the baselines
in noisy scenarios. These experimental results demonstrate our
NANE is flexible and robust with noise in various multi-layer
network scenarios.

D. Parameter Sensitivity

In this section, we study the parameter α in our NANE.
We vary the value of α from 0.1 to 0.9 with an equal interval
of 0.1 and check its impact on link prediction task with each
dataset. We report the results in Table III.

We can observe that the best setting of α is different in
each dataset. Combined with Fig. 2, we find that the value
of the best setting is related to the global similarities among
the layers. For the layers with similar global structures, e.g.,
ArXiv, α tends to be set as a small value, which means NANE
can accept more of the cross-layer information, while for the
networks with diverse layers, a larger α can make NANE focus
on preserving distinct structural information of each layer and
less cross-layer information is integrated. When the value of
α is close to 1, our method will degenerate into network
embedding on each layer seperately and the results wil be
close to DeepWalk in Table II.

V. RELATED WORK

The rapid growth of network-based analysis tasks has
brought significant concerns on the representations of the
vertices. Network embedding has been emerged as an effective
and efficient approach for learning low-dimension distributed
representations for the nodes in the network and is studied
intensively in recent years.

A. Single-Layer Network Embedding

Inspired by Skip-Gram [18], a widely adopted word rep-
resentation learning model in natural language processing,
DeepWalk [4] performs a random walk over networks to gen-
erate vertex sequences and conducts Skip-Gram to obtain node
embeddings. On top of DeepWalk, Node2vec [5] modifies the
random walk strategy into a biased random walk to explore
network structure more efficiently. In addition to the Skip-
Gram based methods, some other works design particular
objective function to refine node embeddings. LINE [6] opti-
mizes two objective functions to separately approximate first-
order and second-order proximity in the large-scale networks.
Tri-Party [26] proposes three parts of objectives to incorporate
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text contents and label information into node embedding vec-
tors. Another general approach for obtaining node embeddings
is matrix factorization. GreRap [27] proposed a matrix factor-
ization based methods to encode k-step representations, where
each step reflects different local information. TADW [28]
incorporates text contents into network embedding under the
framework of matrix factorization. Some other works propose
to take advantage of the Deep Neural Network (DNN) to
preserve network structure in high-order. SDAE [29] and
SDNE [30] both propose an AutoEncoder based network
embedding method to learn representations for vertices.

B. Multiplex Network Embedding

Although previous methods have achieved satisfactory per-
formance on many downstream network analysis tasks, they
only consider the single-layer network, ignoring the multiplex
network. Multiplex network is a multi-layer network, where
the layers share the same set of nodes. Each layer in the
multiplex network characterizes one facet of the node while
the structures of the layers are usually associated. Nowadays,
multiplex networks have been extensively studied as a special
type of the networks, and many works have been proposed to
focus on graph mining on it [10], [31]–[34]. Because of the
complex relationship among the layers, existing single-layer
network embedding methods cannot work for the multiplex
networks.

To make the data mining tasks on the multiplex network
more actionable, several works have been proposed to trans-
form the multiplex network into a low-dimension vector space.
Most of the previous works assume that the layers are similar
and complementary. PMNE [11] proposes two simple merge-
based methods which only consider inter-layer edges or intra-
layer edges, and one cross-layer method which performs a
biased random-walk across each layer, to obtain one overall
embedding for each node. MTNE [13] builds a bridge among
different layers by sharing a common embedding vector for
the counterparts in different layers. SMNE [12] also shares
a common embedding across layers, but propose one high-
dimensional common embedding and one low-dimensional
additional vector for each node to save memory occupation.
MELL [14] proposes the method of simultaneously learning
node embeddings and layer embeddings using all of the layer
structures. However, real-life networks do not always satisfy
this complementary assumption. For example, the professional
relationship may not align well with friendship [15]. Until very
recently, mvn2vec [15] introduces the concepts of preservation
(exclusiveness) and collaboration (complementarity) between
different types of layers and argues that preservation and
collaboration can co-exist in a multiplex network. Mvn2vec
manipulates the extent of model’s preference for preserving the
complementary information via controlling a hyperparameter.

However, all existing methods fail to consider the noise
information among different layers, especially when the coun-
terparts take entirely different roles. Preserving this noisy
cross-layer information can sacrifice the distinct properties of
each layer. To handle these problems, we propose NANE to

jointly learn from multiple layers while filtering out the noisy
information.

In addition to the works mentioned above, DMNE [35]
considers the scenario where each layer may have different sets
of nodes and the cross-network relationships can be many-to-
many which are associated with weights. MVE [36] proposes
an attention-based method to learn the representation of multi-
view networks in supervised schemas. However, the scenarios
of these works are different from this work.

VI. CONCLUSION

We have introduced a flexible embedding model for multi-
plex networks, namely NANE. It considers the local structure
of each node in the layers as its roles to reasonably incorporate
cross-network relationships and boost the quality of learned
node representations. NANE is generic for multiple networks
and robust with noise. A set of experimental results on real-
world datasets show analytically that NANE can achieves
better performance on all of the datasets and significantly
outperforms existing methods on noisy network scenarios.
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