
Computing Trajectory Similarity in Linear Time: A
Generic Seed-Guided Neural Metric Learning

Approach

Di Yao1,4, Gao Cong2, Chao Zhang3, Jingping Bi1,4
1Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

2School of Computer Science and Engineering, Nanyang Technological University, Singapore
3Computer Science Department, University of Illinois at Urbana-Champaign, Urbana, IL, USA

4University of Chinese Academy of Sciences, Beijing, China
1,4{yaodi, bjp}@ict.ac.cn,2gaocong@ntu.edu.sg, 3czhang82@illinois.edu

Abstract—Trajectory similarity computation is a fundamental
problem for various applications in trajectory data analysis.
However, the high computation cost of existing trajectory sim-
ilarity measures has become the key bottleneck for trajectory
analysis at scale. While there have been many research efforts
for reducing the complexity, they are specific to one similarity
measure and often yield limited speedups. We propose NEUTRAJ
to accelerate trajectory similarity computation. NEUTRAJ is
generic to accommodate any existing trajectory measure and fast
to compute the similarity of a given trajectory pair in linear time.
Furthermore, NEUTRAJ is elastic to collaborate with all spatial-
based trajectory indexing methods to reduce the search space.
NEUTRAJ samples a number of seed trajectories from the given
database, and then uses their pair-wise similarities as guidance to
approximate the similarity function with a neural metric learning
framework. NEUTRAJ features two novel modules to achieve
accurate approximation of the similarity function: (1) a spatial
attention memory module that augments existing recurrent neu-
ral networks for trajectory encoding; and (2) a distance-weighted
ranking loss that effectively transcribes information from the
seed-based guidance. With these two modules, NEUTRAJ can
yield high accuracies and fast convergence rates even if the
training data is small. Our experiments on two real-life datasets
show that NEUTRAJ achieves over 80% accuracy on Fréchet,
Hausdorff, ERP and DTW measures, which outperforms state-
of-the-art baselines consistently and significantly. It obtains 50x-
1000x speedup over bruteforce methods and 3x-500x speedup
over existing approximate algorithms, while yielding more accu-
rate approximations of the similarity functions.

Index Terms—deep metric learning, trajectory similarity, lin-
ear time

I. INTRODUCTION

Computing the similarity between two trajectories is a

primitive that is fundamental to many searching and mining

tasks for trajectory analysis. Various measures have been

proposed to capture the intrinsic structural similarities between

trajectories, including Dynamic Time Warping(DTW) [31], the

Hausdorff distance [3], the Fréchet distance [2], Edit distance

with Real Penalty(ERP) [9], etc. These similarity measures

have played a key role in tasks like anomaly detection [18],

duplicate detection [27], trajectory clustering [6].

Unfortunately, the high computation cost of existing trajec-

tory similarity measures has become the de facto bottleneck

for trajectory analysis at scale. To compute the similarity

between two trajectories, existing techniques often require

to align the points in the two trajectories, accumulate the

information among all aligned pairs, and finally produce the

distance. Such a process incurs quadratic and even super-

quadratic time complexity and limits many trajectory mining

algorithms to scale to large datasets. For instance, it takes

us more than 6.5 hours to compute the pair-wise Hausdorff

distances for merely ∼8000 human GPS trajectories on a high-

end server. As massive trajectory data are being collected at

an unprecedentedly massive scale in many kinds of scenarios,

fast trajectory similarity computation under different measures

has become a pressing need.

The difficulties in fast trajectory similarity computation are

two-fold. The first is the complicated nature of trajectory

similarity computation. A pair of input trajectories may have

completely different lengths, and the best alignment of the

two trajectories is subject to flexible shifting and scaling

instead of exact head-to-tail matching. As such, most existing

techniques have to employ a scan-and-align mechanism for

determining the best matching, and it is hard to decouple the

matching process and reduce the time cost. The second is

the variations across different similarity measures. Prevailing

trajectory measures (e.g., DTW, Hausdorff, Fréchet) differ

a lot in their definitions and computation mechanisms. It

is challenging to design a generic accelerating strategy that

accommodates all the existing measures.

There have been considerable research efforts attempting to

accelerate trajectory similarity computation for various tasks.

Such efforts can be generally categorized into two lines. The

first [10], [14], [15], [30] is to reduce the involved number

of computations at a global level. However, the techniques

along this line are exclusively designed for the top-k similarity

search task. Instead of reducing the computation complexity

for an ad-hoc pair of trajectories, they focus on designing

indexing and pruning strategies for a given trajectory database

and reducing the number of computations for top-k similarity

search. As such, they cannot be applied for tasks that require

the distances between all trajectory pairs such as trajectory

1358

2019 IEEE 35th International Conference on Data Engineering (ICDE)

2375-026X/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDE.2019.00123

clustering and anomaly detection. The second line aims at

directly reducing the time complexity for trajectory similarity

computation with approximate algorithms. Different strategies

have been proposed for different measures, such as locality

sensitive hashing (LSH) for the Fréchet and DTW distances

[12]. Unfortunately, the techniques are designed for one spe-

cific distance measure and not applicable to any other measure.

We propose a model that drastically accelerates trajectory

similarity computation for any measures. Our proposed model,

named NEUTRAJ, is an approximate approach based on neural

metric learning. NEUTRAJ samples a pool of seed trajectories

from the database and use their pair-wise similarities as

guidance. Specifically, NEUTRAJ learns a neural network that

jointly embeds input trajectories and approximates the distance

function. It has the following attractive characteristics:

• Generic: Unlike previous methods that are specific to one

trajectory similarity measure, NEUTRAJ is generic enough

to support any existing measure. It can thus be used for

accelerating most trajectory mining tasks.

• Fast: Given an ad-hoc pair of trajectories, NEUTRAJ is

able to compute their similarity in O(L) time complexity,

where L is the length sum of the pair. In practice, we

observed it at least 50x faster than accurate bruteforce

computation.

• Accurate: NEUTRAJ achieves superb approximation per-

formance in practice. On two real trajectory datasets, NEU-

TRAJ achieves over 80% hitting ratio and less than 50m

average error distance on top-10 similar trajectory search

task for Fréchet, Hausdorff, DTW and ERP. Meanwhile, it

obtains more than two times higher hitting ratios compared

with state-of-the-art trajectory similarity approximation

methods [12].

• Elastic: NEUTRAJ embeds the trajectory without losing

spatial information which makes it elastic to extend by

other indexing and pruning strategies. In tasks that simi-

larities of all pairs are non-essential, NEUTRAJ is able to

cooperate with existing indexing methods [10], [15], [30]

for reducing the computing space.

The core of NEUTRAJ is a deep metric learning framework

that uses recurrent neural networks (RNNs) to generate trajec-

tory embeddings. We sample a pool of seed trajectories from

the database and compute their pair-wise similarities. With

the computed seed similarities as guidance, we design a pair-

wise loss to optimize the network for fitting seed similarities.

NEUTRAJ features two novel modules that encourage the

network to approximate the similarity function accurately:

(1) Spatial attention memory (SAM). Vanilla RNNs along

with its existing variants (GRU, LSTM) can only model one

sequence without considering between-sequence correlations.

Our designed SAM unit memorizes the information from pre-

viously processed trajectories with the attention mechanism,

and capture the correlations between training trajectories to

produce better trajectory embeddings. (2) Distance-weighted
ranking loss. One difficulty of making use of the seed tra-

jectories is the dilemma between efficiency and effectiveness.

On the one hand, training the network sufficiently would

preferably iterate over all pairs of trajectories. On the other

hand, a full enumeration of all pairs of trajectories incurs

expensive computation time. To address this dilemma, we

propose a distance-weighted sampling strategy to focus on the

more discriminative training pairs. Along with the weighted

sampling strategy, distance-weighted ranking loss is a ranking

loss that learns the parameters of the network to conform to

the guidance from the seeds. With these two novel modules,

NEUTRAJ can yield high accuracies and fast convergence rates

even if the training data is small.

Our contributions can be summarized as follows:

1) We propose a neural metric learning method for accel-

erating trajectory similarity computation under different

measures. To the best of our knowledge, NEUTRAJ is the

first method that supports accelerating generic trajectory

similarity measures, making it widely applicable to many

applications.

2) We propose the spatial attention memory unit to model

the correlation between spatially close trajectories based

on an attention network and external memory tensor.

3) We design a weighted sampling and learning module that

fully unleashes the power of seed trajectories. Compared

with existing architecture, our learning module yields

faster convergence rates and higher accuracies.

4) We conduct extensive experiments on two real trajectory

datasets and four popular trajectory similarity measures.

The results demonstrate that the proposed model con-

sistently outperforms state-of-the-art baselines in both

accuracy and efficiency.

II. RELATED WORK

In this section, we provide an overview of existing studies

related to NEUTRAJ from three perspectives: (1) trajectory

similarity computation; (2) deep metric learning; and (3)

memory networks.

Trajectory Similarity Computation. Various techniques have

been proposed to accelerate trajectory similarity computation,

which can be broadly categorized into two categories. The

first category uses indexing and pruning techniques to reduce

the involved number of computations at a global level. Most

techniques in this category employ tree-based index structures

[10], [11], [14], [19], [27] , such as K-D tree or R-tree to

organize the trajectory data in a hierarchy. Based on the index,

bounding-box-based pruning techniques are employed to elim-

inate unnecessary computations. Thus sub-trajectories [10],

[11] or point segments [15], [30] in a bounding box which are

too faraway to belong to the top-k results are pruned. However,

the techniques in this category are specifically designed for

the top-k similarity search problem. They do not reduce the

time complexity of computing the similarity between a pair

of trajectories. Hence, they cannot be applied for tasks that

require the distances of all pairs such as trajectory clustering

and anomaly detection.

The second category aims at designing approximate algo-

rithms to speed up similarity computation for a pair of trajec-

1359

tories. Most techniques in this category treat each trajectory

as a spatial curve and address the problem from the angel of

computational geometry. Focusing on the Hausdorff distance,

Farach-Colton et al. and Backurs et al. [4], [13] proposed

embedding-based methods for approximating nearest neighbor

search. Salvador et al. [1] proposed an approximate algorithm

which can fast compute the DTW distance. Thanawin et al.
[26] proposed a method which omits the square computation

step to speed up DTW computation. Li et al. [20] proposed

a new trajectory similarity measure based on road network

and employ deep representation learning to approximate it.

Very recently, Driemel et al. [12] proposed a locality sensi-

tive hashing (LSH) based algorithm for fast computing the

Fréchet and Hausdorff distances. Although these algorithms

can achieve high computation efficiency, they suffer from two

shortcomings. First, they rely on hand-crafted heuristics and

could lead to unsatisfactory accuracies. In our experiments, we

observed that these algorithms generate poor approximations

in many cases. Second, they are all designed for one or two

specific measures. It is hard to adapt these techniques for other

similarity measures.

Deep Metric Learning. NEUTRAJ is related to the recent

development of deep metric learning, which aims at learning

a distance function that measures how similar two objects

are based on neural networks. Bromley et al. [5] pioneered

deep metric learning and proposed the classic Siamese network

for signature verification. Qian et al. [25] used precomputed

activation features to learn a feature embedding for classi-

fication. Pei et al. [24] extended the Siamese network to

learn a similarity metric for sentences. Our method differs

from the above models in two aspects. First, they are all

designed for modeling one sequence independently, while

ours employs the spatial attention mechanism to capture the

correlations among all the trajectories. Second, they all use

random sampling to generate training samples and could suffer

from low convergence for trajectory data.

Memory Network. NEUTRAJ employs memory network to

capture the relations between trajectories. The embryonic form

of memory network is proposed to solve the tasks that need

to model long term dependency [16]. Weston et al. [29] first

employed a long-term memory component and defined the

read and write operation for questing answering(QA). Then

Sukhbaatar et al. [28] extended the architecture to recurrent

neural network. In the proposals [8], [29], the memory network

was extended to a hierarchical structure. But these memory

structures are designed without considering the locality infor-

mation and cannot be used directly for trajectory modeling.

III. PRELIMINARIES

A. Problem Definition

We consider a trajectory database T and a trajectory

similarity function f(·, ·). Each trajectory T ∈ T is a

sequence of points recording the trace of a moving object.

Although each sample point in a trajectory has a sampling

time, we only focus on finding trajectories with similar

TABLE I
NOTATIONS USED IN THIS PAPER

Notations Description

T ,S A trajectory database and a pool of N seeds trajectories
which are random sampled from the database.

T A trajectory in T which consist of a sequence of
coordinate tuples.

D,S The distance and similarity matrices of S which have
the same size: RN×N .

M The memory tensor which stores the spatial informa-
tion of P ×Q grids.

Ei,Ej d-dimensional embedding vectors of Ti and Tj learnt
by NEUTRAJ.

Xt The input of NEUTRAJ at t-time step which contains
the coordinate input Xc

t and grid input Xg
t .

W,U, b The linear weights and bias in SAM unit.
ft, it,ot The forget, input and output gates in SAM-argumentd

LSTM unit.
st Novel spatial gate in SAM unit which controls the

read and write operations on M.
ct, ĉt The cell state and intermediate cell state in SAM

unit at t-time step which store the information of the
processed t− 1 steps.

ht,ht−1 The hidden states in SAM unit at time step t and t−1.
Gt The spatial information matrix of Xt with shape

R
(2w+1)2×d, where w is the scanning bandwidth.

A The spatial attention weight that reflects the similarity
weights of ĉt over Gt.

ccatt , chis
t The intermediate concatenated state and the final his-

torical state in memory read operation at t-time step.
Ta The anchor trajectory which is sampled from the seeds

for training NEUTRAJ.

T s
a ,T d

a n similar trajectories and n dissimilar trajectories of
Ta which are sampled from the seeds for fitting the
pair-wise similarities.

Ss
a,S

d
a The ground truth similarities of both similar and dis-

similar pairs of Ta

Ŝs
a, Ŝd

a The similarities of Ta which are calculated by NEU-
TRAJ.

shape, regardless of the time information. Without loss of

generality, we consider two-dimensional trajectories. That is,

each trajectory T = [Xc
1 , ..., X

c
t , ...] is a sequence of tuples

where Xc
t (xt, yt) is the t − th location of the object. For

any two trajectories Ti, Tj ∈ T , function f(Ti, Tj) measures

the similarity between Ti and Tj . Here, f(·, ·) could be the

DTW similarity, the Hausdorff distance, the Fréchet distance,

or any other trajectory similarity measure. We omit the detailed

definitions of these measures due to the space limit.

Our problem is to compute the similarity for an ad-hoc pair

of trajectories from T under the similarity function f(·, ·).
However, for most prevailing similarity measures, computing

the similarity between a pair of trajectories incurs quadratic

time complexity. Hence, the research question is: how can

we learn an approximate similarity function g(·, ·), such that

computing g(Ti, Tj) takes O(n) time while the difference

|f(T i, T j)− g(T i, T j)| is minimized.

B. Overview of NEUTRAJ

At the high level, NEUTRAJ adopts a neural metric learning

framework. It randomly samples N trajectories from T as the

1360

T s
a

<latexit sha1_base64="EeRcmAvylQ2f5dzuVmtzWFwq32g=">AAAB+3icbVBNS8NAFHzxs9avaI9egkUQDyURQb0VvHis0NhCG8Nmu2mXbjZhdyOEEP+KFw8qXv0j3vw3btoctHVgYZh5jzc7QcKoVLb9baysrq1vbNa26ts7u3v75sHhvYxTgYmLYxaLfoAkYZQTV1HFSD8RBEUBI71gelP6vUciJI15V2UJ8SI05jSkGCkt+WZjGCE1wYjl3eIhl4Wfo8I3m3bLnsFaJk5FmlCh45tfw1GM04hwhRmScuDYifJyJBTFjBT1YSpJgvAUjclAU44iIr18Fr6wTrQyssJY6MeVNVN/b+QokjKLAj1ZRpWLXin+5w1SFV55OeVJqgjH80NhyiwVW2UT1ogKghXLNEFYUJ3VwhMkEFa6r7ouwVn88jJxz1vXLfvuotk+q9qowREcwyk4cAltuIUOuIAhg2d4hTfjyXgx3o2P+eiKUe004A+Mzx8MjpUn</latexit><latexit sha1_base64="EeRcmAvylQ2f5dzuVmtzWFwq32g=">AAAB+3icbVBNS8NAFHzxs9avaI9egkUQDyURQb0VvHis0NhCG8Nmu2mXbjZhdyOEEP+KFw8qXv0j3vw3btoctHVgYZh5jzc7QcKoVLb9baysrq1vbNa26ts7u3v75sHhvYxTgYmLYxaLfoAkYZQTV1HFSD8RBEUBI71gelP6vUciJI15V2UJ8SI05jSkGCkt+WZjGCE1wYjl3eIhl4Wfo8I3m3bLnsFaJk5FmlCh45tfw1GM04hwhRmScuDYifJyJBTFjBT1YSpJgvAUjclAU44iIr18Fr6wTrQyssJY6MeVNVN/b+QokjKLAj1ZRpWLXin+5w1SFV55OeVJqgjH80NhyiwVW2UT1ogKghXLNEFYUJ3VwhMkEFa6r7ouwVn88jJxz1vXLfvuotk+q9qowREcwyk4cAltuIUOuIAhg2d4hTfjyXgx3o2P+eiKUe004A+Mzx8MjpUn</latexit><latexit sha1_base64="EeRcmAvylQ2f5dzuVmtzWFwq32g=">AAAB+3icbVBNS8NAFHzxs9avaI9egkUQDyURQb0VvHis0NhCG8Nmu2mXbjZhdyOEEP+KFw8qXv0j3vw3btoctHVgYZh5jzc7QcKoVLb9baysrq1vbNa26ts7u3v75sHhvYxTgYmLYxaLfoAkYZQTV1HFSD8RBEUBI71gelP6vUciJI15V2UJ8SI05jSkGCkt+WZjGCE1wYjl3eIhl4Wfo8I3m3bLnsFaJk5FmlCh45tfw1GM04hwhRmScuDYifJyJBTFjBT1YSpJgvAUjclAU44iIr18Fr6wTrQyssJY6MeVNVN/b+QokjKLAj1ZRpWLXin+5w1SFV55OeVJqgjH80NhyiwVW2UT1ogKghXLNEFYUJ3VwhMkEFa6r7ouwVn88jJxz1vXLfvuotk+q9qowREcwyk4cAltuIUOuIAhg2d4hTfjyXgx3o2P+eiKUe004A+Mzx8MjpUn</latexit>

T d
a

Ta

seeds

Ld
a

Ls
aŜs

a Ss
a

Sd
a

+

D �→ S
<latexit sha1_base64="Ixqf34GWYjJFPf6G3/oM7/8ZpG0FbDwwczrmXO+ffgB9lFjt2yT+57VTCE69jEdJCiyik0NBKrDOOuoEd2UZ/YHx8Ay6FmRE=</<latexit sha1_base64="Ixqf34GWYjJFPf6G3/oM7/8ZpG0FbDwwczrmXO+ffgB9lFjt2yT+57VTCE69jEdJCiyik0NBKrDOOuoEd2UZ/YHx8Ay6FmRE=</<latexit sha1_base64="Ixqf34GWYjJFPf6G3/oM7/8ZpG0FbDwwczrmXO+ffgB9lFjt2yT+57VTCE69jEdJCiyik0NBKrDOOuoEd2UZ/YHx8Ay6FmRE=</

Ŝd
a

Xt
<latexit sha1_base64="a8zP/ZrzX9h1ixy5pIB04jb2dgSTAh079<latexit sha1_base64="a8zP/ZrzX9h1ixy5pIB04jb2dgSTAh079<latexit sha1_base64="a8zP/ZrzX9h1ixy5pIB04jb2dgSTAh079

E<latexit sha1_base64="HEefjtNb75UShTlpvF2G2XvnIMqibTr0m<latexit sha1_base64="HEefjtNb75UShTlpvF2G2XvnIMqibTr0m<latexit sha1_base64="HEefjtNb75UShTlpvF2G2XvnIMqibTr0m

M

Fig. 1. Architecture of NEUTRAJ. Taking similar and dissimilar pairs
of anchor Tai as input, NEUTRAJ first generates the embedding of
each trajectory, and then fits the pair-wise similarity guided by the
ground truth in S.

pool of seeds S and computes a symmetric N ×N distance

matrix D for S. Then it transforms the original distance matrix

into a normalized similarity matrix S. Leveraging the matrix S
as guidance, NEUTRAJ further learns a neural network, which

maps arbitrary-length trajectories into low-dimensional space

to capture their similarities. More formally, for any two input

trajectories Ti and Tj (i, j ∈ [1, ..., N]), NEUTRAJ projects

them to two d-dimensional vectors Ei and Ej, respectively.

The learned mapping should be similarity preserving, namely

f(Ti, Tj) ≈ g(Ti, Tj) where g(·, ·) is the similarity between

Ei and Ej in the embedding space. Figure 1 illustrates the

architecture of NEUTRAJ. It consists of two major parts:

spatial attention memory(SAM) augmented RNN encoder and

seed-guided metric learning method.

SAM Augmented RNN Encoder. NEUTRAJ relies on

recurrent neural networks (RNN) to model the trajectory and

takes the last hidden state of RNN as the embedding vector.

However, as aforementioned, vanilla RNNs and its variants

(GRU, LSTM) capture the information of each sequence inde-

pendently. For trajectory similarity computing, the correlations

between trajectories are critical. It is important to leverage the

information of spatially close trajectories previously seen to

guide the metric learning process. Thus, we design a spatial

attention memory module in NEUTRAJ. It employs a spatial

memory tensor to store the spatial information of previously

processed trajectories. The memory tensor underpins read
and write operations over the entire space based on the soft

attention mechanism, such that the information of previously

seen trajectories can be encoded and retrieved on demand.

Seed-Guided Neural Metric Learning. Based on SAM

augmented RNN, NEUTRAJ builds a seed-guided metric learn-

ing architecture to consume a pair of trajectories, and learns

the network to approximate the similarity matrix S. Existing

metric learning methods employ random sampling to pro-

duce training pairs, which implies all trajectories are equally

weighted. But this assumption dose not hold in trajectory

metric learning as it ignores the spatial proximity between

trajectories. Particularly, we develop a distance-weighted sam-

pling procedure and a ranking loss objective to solve this

problem. Unlike previous random sampling, the distance-

 Attention Network

Xg
t

~

t− 1

t

t+ 1

M

Gt

chist

ct

ĉt

Fig. 2. Illustration of the proposed spatial attention memory(SAM)
with scanning bandwidth w = 2. At each time step, SAM takes two
inputs, the input grid cell Xg

t and the intermediate cell state ĉt. The
reader first scans the memory M to get (2 ∗ 2 + 1)2 = 25 grid cell
embeddings. Then it calculates and outputs the attention cell state
chis
t . The writer (red lines) updates M with the cell state ct in the

recurrent unit.

weighted sampling focuses on the more discriminative training

pairs from the seed trajectories. With the weighted sampling

strategy, each seed trajectory Ta is associated with one similar

list T s
a and one dissimilar list T d

a in the pool. The ranking

loss then learns the parameters of the network for fitting the

similarities to S and preserving the ranking order in both

similar and dissimilar pairs.

IV. SAM AUGMENTED RNN ENCODER

In this section, we introduce the Spatial Attention Memory

(SAM) module that augments existing RNN architectures for

trajectory encoding. Below, we first introduce the spatial at-

tention memory structure. Then we present a fancy RNN unit,

SAM-augmented LSTM, which augment existing recurrent

neural networks with the SAM. Finally, we detail the read and

write operations of the memory in SAM-augmented LSTM.

A. Grid-Based Memory Tensor

The SAM module is a grid-based memory network. As

a prepossessing step, we partition the space into small grid

cells. Then any trajectory T = [Xc
1 , ..., X

c
t , ...] can be mapped

into a sequence T g = [Xg
1 , ..., X

g
t , ...] where Xg

t = (xg
t , y

g
t)

specifies the grid cell at t − th position. Figure 2 shows the

architecture of proposed SAM module. As shown, the core part

of SAM is a memory tensor M. The memory tensor M stores

vector representations for all the grid cells in the space, which

enable encoding and retrieving information for previously seen

trajectories. Formally, assume the entire space is partitioned

into P ×Q grid cells, then the dimensionality of the memory

tensor is R
P×Q×d, where d is the hidden size of the recurrent

unit. Each slice (p, q, :) in M stores the embedding vector of

cell (p, q) and all grid cell embeddings are initialized with

0 before training. As NEUTRAJ continuously processes the

trajectories in the training data, the memory tensor M will be

updated accordingly by memory-augmented recurrent unit to

encode the information in processed trajectories.

B. Memory-Augmented RNN Unit

The SAM module allows for memorizing and retrieving

information from processed trajectories. We leverage it to

1361

×
tanhσ σ σ

read ×

ft it

σ

c̃t st ot

Xg
t

<latexit sha1_base64="UGhOpWux2ccFf1kBp+uXqGEiBOY=">e/Ddu2xy09cHA470ZZuZFmRQGPe//1ZiBJMyfRz0heaM5RjSyjTwt5K2JBqytDmU<latexit sha1_base64="UGhOpWux2ccFf1kBp+uXqGEiBOY=">e/Ddu2xy09cHA470ZZuZFmRQGPe//1ZiBJMyfRz0heaM5RjSyjTwt5K2JBqytDmU<latexit sha1_base64="UGhOpWux2ccFf1kBp+uXqGEiBOY=">e/Ddu2xy09cHA470ZZuZFmRQGPe//1ZiBJMyfRz0heaM5RjSyjTwt5K2JBqytDmU

ct−1

ht−1

ct

ht

× + +
tanh

Xc
t

<latexit sha1_base64="UmSYY0WJf6dHxkSUUzM8Nm0D7dg=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4CokI6q3gxWMFYwttLJvtpl262YTdiVBCf4MXDype/UPe/Ddu2xy09cHA470ZZuZFmRQGPe/bWVldW9/YrGxVt3d29/ZrB4cPJs014wFLZarbETVcCsUDFCh5O9OcJpHkrWh0M/VbT1wbkap7HGc8TOhAiVgwilYK2o+sh71a3XO9Gcgy8UtShxLNXu2r209ZnnCFTFJjOr6XYVhQjYJJPql2c8MzykZ0wDuWKppwExazYyfk1Cp9EqfalkIyU39PFDQxZpxEtjOhODSL3lT8z+vkGF+FhVBZjlyx+aI4lwRTMv2c9IXmDOXYEsq0sLcSNqSaMrT5VG0I/uLLyyQ4d69d7+6i3nDLNCpwDCdwBj5cQgNuoQkBMBDwDK/w5ijnxXl3PuatK045cwR/4Hz+ABgJjlc=</latexit><latexit sha1_base64="UmSYY0WJf6dHxkSUUzM8Nm0D7dg=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4CokI6q3gxWMFYwttLJvtpl262YTdiVBCf4MXDype/UPe/Ddu2xy09cHA470ZZuZFmRQGPe/bWVldW9/YrGxVt3d29/ZrB4cPJs014wFLZarbETVcCsUDFCh5O9OcJpHkrWh0M/VbT1wbkap7HGc8TOhAiVgwilYK2o+sh71a3XO9Gcgy8UtShxLNXu2r209ZnnCFTFJjOr6XYVhQjYJJPql2c8MzykZ0wDuWKppwExazYyfk1Cp9EqfalkIyU39PFDQxZpxEtjOhODSL3lT8z+vkGF+FhVBZjlyx+aI4lwRTMv2c9IXmDOXYEsq0sLcSNqSaMrT5VG0I/uLLyyQ4d69d7+6i3nDLNCpwDCdwBj5cQgNuoQkBMBDwDK/w5ijnxXl3PuatK045cwR/4Hz+ABgJjlc=</latexit><latexit sha1_base64="UmSYY0WJf6dHxkSUUzM8Nm0D7dg=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4CokI6q3gxWMFYwttLJvtpl262YTdiVBCf4MXDype/UPe/Ddu2xy09cHA470ZZuZFmRQGPe/bWVldW9/YrGxVt3d29/ZrB4cPJs014wFLZarbETVcCsUDFCh5O9OcJpHkrWh0M/VbT1wbkap7HGc8TOhAiVgwilYK2o+sh71a3XO9Gcgy8UtShxLNXu2r209ZnnCFTFJjOr6XYVhQjYJJPql2c8MzykZ0wDuWKppwExazYyfk1Cp9EqfalkIyU39PFDQxZpxEtjOhODSL3lT8z+vkGF+FhVBZjlyx+aI4lwRTMv2c9IXmDOXYEsq0sLcSNqSaMrT5VG0I/uLLyyQ4d69d7+6i3nDLNCpwDCdwBj5cQgNuoQkBMBDwDK/w5ijnxXl3PuatK045cwR/4Hz+ABgJjlc=</latexit>

Fig. 3. SAM-augmented LSTM.

ameliorate standard RNN unit. In this way, the RNN encoder

captures the information from not only the current trajectory,

but also those similar ones previously processed. In what

follows, we show the details of SAM-augmented LSTM.

Figure 3 shows the architecture of SAM-augmented LSTM

unit and the green parts are the novel SAM module. As shown,

at each time step t, the unit takes Xt = (Xc
t , X

g
t) and the

previous hidden state ht−1 as the input and outputs ht to

the next recurrent step. As in LSTM, SAM-augmented LSTM

employs gating mechanism to control the operations on the cell

state ct that stores core information of the processed sequence.

The recurrent step is performed as follows:

(ft, it, st,ot)
T = σ(Wg ·Xc

t +Ug · ht−1 + bg) (1)

c̃t =tanh(Wc ·Xc
t +Uc · ht−1 + bc) (2)

ĉt =ft · ct−1 + it · c̃t (3)

ct =ĉt + st · read(ĉt, Xg
t ,M) (4)

write(ct, st, X
g
t ,M) (5)

ht =ot · tanh(ct) (6)

where Wg ∈ R
4d×2, Ug ∈ R

4d×d, Wc ∈ R
d×2, Uc ∈ R

d×d

and d is the hidden state size. All of the gates(ft, it, st,ot), cell

states(c̃t, ĉt, ct) and hidden states(ht,ht−1) have the same

shape: Rd×1.

To obtain the hidden state ht, the unit performs following

steps: (1) Gate operations. By Equation 1, the unit applies

a sigmoid function σ on the linear transformation of the

coordinate input Xc
t and the previous hidden state ht−1 to

obtain the four gates: forget gate ft, input gate it, spatial gate

st and output gate ot. (2) Cell state operations. By Equations

2 ∼ 4, the unit produces cell state of current time-step ct,

based on the ft, it, st and the inputs (Xc
t , X

g
t). (3) Hidden

state operations. By Equation 6, the unit generates ht and

output it to the next recurrent step.

The main novelty of SAM-augmented LSTM lies in Equa-

tion 4 that augments ĉt with historical information by the read
operations. After that, the unit updates the memory tensor M
by Equation 5. The details of read and write operations are

described in the next section.

C. Attention-Based Reads and Writes

With the memory tensor M, NEUTRAJ uses the attention

mechanism to capture the information in processed trajec-

tories: (1) the read operation retrieves relevant grid cell

T1

T2

T3

Xt

T
g1

g2

g3

g4

g5

g6

g7

g8Gt

Fig. 4. Example to illustrate spatial reads and writes. T1 ∼ T3

are previously processed trajectories; T is the current processing
trajectory and Xt is the current processing input. After processed
T1 ∼ T3, grid cell embeddings of g1 ∼ g8 are updated to non-zero
value. By spatial readers, NEUTRAJ scans the spatial closets grid
cells of Xt and computes the attention weights of grids for encoding
T . The attention weights of non-zero grid cells g4 ∼ g7 are the red
values. After that, the cell state of Xt is used to update the grid cell
embedding of g6.

embeddings from the M to augment encoding the current

trajectory; and (2) the write operation attends to relevant grid

cells and updates grid cell embeddings with the information

of the current trajectory.

1) Spatial Memory Reader: The reader retrieves informa-

tion from the memory and uses the information to augment

RNN-based trajectory encoding. As shown in Figure 2- 1©, at

each step t, the reader takes two inputs: (1) grid cell input

Xg
t ; and (2) intermediate cell state ĉt. With these two inputs,

the reader outputs a vector chist , which augments ĉt with the

influence of previously processed trajectories close to Xg
t .

Illustrated by Figure 2- 2©, the attentional reader first looks

up the grid cells that are spatially close to Xg
t = (xg

t , y
g
t).

Specifically, the reader uses the bandwidth w to perform a

memory scan and identifies the grid cells around (xg
t , y

g
t):

scan(xg
t) = [xg

t − w, xg
t + w]; scan(ygt) = [ygt − w, ygt + w].

The read grid cell embeddings are stored in a matrix Gt with

shape R
(2w+1)2×d. After memory scan, the reader employs

the attention network to transform the matrix Gt to an d-

dimensional vector, which is shown in Figure 2- 3©. The

attention mechanism is performed as follows:

A = softmax(Gt · ĉt); mix = Gt
T ·A;

ccatt = [ĉt,mix]; chist = tanh(Whis · ccatt + bhis)

where the matrix Whis and bhis are the parameters of the

attention network. A ∈ R
(2w+1)2×1 is the attention weight

that reflects the similarity of the ĉt over the historical grid

cell embedding matrix Gt. For example, Non-zero attention

weights over grid cells g4 ∼ g7 in Figure 4 are 0.2, 0.1,

0.6, 0.1, which indicates the embedding of current trajectory

is more similar to T1 than T2 and T3. mix ∈ R
d×1 is the

weighted sum of the Gt to concatenate to ĉt. Finally, a fully

connected layer transforms ccatt to fit the current state and

generate the spatial attention cell state chist . Once chist is

generated, we can combine it with the intermediate cell state

ĉt to get the final cell state ct by Equation 4.

1362

2) Spatial Memory Writer: The grid cell embeddings in M
should be updated during the training process. At each step, the

writer directly performs sparse updating of the corresponding

entry in the memory M based on st:

M(Xg)new = σ(st) · ct + (1− σ(st)) ·M(Xg)old.

By this equation, the grid cell embeddings are essentially

the weighted average of processed pass-by trajectories. Note

that we are using the same spatial gate st for both the reader

and writer. It is because st reflects not only the confidence

level that chis is useful for the current input, but also how

much information in the current input is suitable for updating

M(Xg). Another benefit of sharing the same gate is that it

limits the number of parameters of our model.

V. SEED-GUIDED NEURAL METRIC LEARNING

In this section, We first describe the metric learning proce-

dures of NEUTRAJ and then present the weighted sampling

and optimization method to learn the model parameters.

A. Metric Learning Procedures of NEUTRAJ

Figure 1 illustrates our NEUTRAJ model that uses neural

networks to embed trajectories into d-dimensional space and

approximates the similarity function. As shown, the core of

NEUTRAJ is the spatial memory-augmented RNN encoder,

which generates latent vector representation for any trajectory.

For an input trajectory, the final hidden state of our RNN

encoder is used as the trajectory representation.

Given a pool of seed trajectories S and their distance matrix

D, NEUTRAJ normalizes D to a similarity matrix S and uses

the S as guidance. For any two input trajectories Ti and Tj

(i, j ∈ [1, ..., N]), the RNN encoder is able to project them to

two d-dimensional vectors Ei and Ej. Our goal is to learn the

network parameters such that similarity between Ei and Ej is

close to the original trajectory similarity f(Ti, Tj). But directly

fit all similarities in S is intractable and will lead to over-

fitting. We need select discriminative pairs for optimization.

Formally, the loss function of NEUTRAJ is the weighted sum

of MSE of all pairs: min
∑K

k=1 wk · (f(Ti, Tj)− g(Ti, Tj))
2,

where K is the number of discriminative pairs and wk is the

weight of pair k.

To this end, we design a similarity-preserving ranking

objective in NEUTRAJ. Specifically, for any anchor trajectory

Ta, we will sample a set of similar neighbors T s
a , as well as

a set of dissimilar neighbors T d
a from the seed trajectories, to

form the similar and dissimilar pairs. With the sampled pairs,

we design a weighted ranking objective, which encourages

the network to learn a regression function for fitting the

similarities to S, as well as preserving the ranking order in

both similar and dissimilar pairs. In what follows, we introduce

our weighted sampling and optimization procedure.

B. Weighted Sampling and Optimization

Our NEUTRAJ model for metric learning is related to

the classic Siamese network [5]. The Siamese network uses

random sampling method to generate training pairs, and learns

a regression function to fit the target measure. However, such

a random sampling strategy implies all pairs have the same

weight to the total loss. This assumption does not hold for

trajectory metric learning as it ignores the spatial proximity

between trajectories. Given one anchor trajectory, we need to

focus on the most similar trajectories and the most dissimilar

ones, because they are more discriminative than the others.

Directly using random sampling and treating all pairs equally

can lead to slow convergence and suboptimal accuracies.

To remedy the above problem, we propose a distance-

weighted sampling and optimization strategy. We first trans-

form the original distance matrix D into a normalized simi-

larity matrix S as follows:

Si,j = exp(−α ·Di,j)/
N∑

n=1

exp(−α ·Di,n)

where α is a tunable parameter controlling the similarity

value distribution. The reason behind the transformation is

that the distribution of raw distances often obey to power-

law distributions and the magnitude of the distance can span

a large range. The transformation is essentially a smoothing

operation which brings the similarity values into the range

[0, 1] and smooths the distribution.

Inspired by [21], our distance-weighted sampling procedure

works as follows. We take trajectories in the pool of N seeds as

anchor trajectories sequentially. For one anchor trajectory Ta,

we take the corresponding row from the similarity matrix S as

the importance vector Ia. With the entries in Ia as importance

weights, we sample n distinct trajectories as similar samples:

T s
a = {T s

1 , ..., T
s
n}. Conversely, we sample another n dissim-

ilar samples T d
a = {T d

1 , ..., T
d
n} using the entries in 1− Ia as

importance weights. Then we rank the similar samples with

the decrease of its similarity to Ta and rank dissimilar samples

with the increase order. Finally, we obtain 2n pairs for Ta.

After sampling, we generate the trajectory embeddings and

define the pair-wise similarities for the anchor trajectory over

the similar and dissimilar pairs as follows:

Ŝs
a = Ŝ(Ta,T

s
a) = [g(Ta, T

s
1), ...g(Ta, T

s
n)]

Ŝd
a = Ŝ(Ta,T

d
a) = [g(Ta, T

d
1), ...g(Ta, T

d
n)]

(7)

where g(Ti, Tj) = exp(−Euclidean(Ei,Ej)) computes the

similarity between two trajectory embeddings, and E is the

embedding of the corresponding trajectory.

Coupled with weighted sampling, we propose a weighted

ranking loss which is motivated by list-wise ranking [7]

and Mean Reciprocal Rank [22]. Given a ranked list of

n sampled trajectories, we set their ranking weights as

r = (1, 1/2, ..., 1/l, ..., 1/n) and normalize the weights by∑n
l=1 rl. For the n similar pairs, their weights decrease with

the ranking order, namely the most similar trajectory in T s
a

is regarded as the most important. Thus we define the loss for

similar pairs of Ta as:

Ls
a =

n∑

l=1

rl · (g(Ta, T
s
l)− f(Ta, T

s
l))

2 (8)

where f(Ti, Tj) is the ground truth similarity of (Ti, Tj).

1363

For dissimilar pairs, it is not reasonable to focus more on

fitting the similarity value. Instead, we design a margin loss

to separate dissimilar trajectories from the anchor trajectory:

Ld
a =

n∑

l=1

rl · [ReLU(g(Ta, T
d
l)− f(Ta, T

d
l))]

2 (9)

The ReLU(x) = max(0, x) function defines the margin

loss as follows: when g(Ta, T
d
l) − f(Ta, T

d
l) < 0, Ld

a = 0,

meaning that dissimilar sample is faraway enough from the

anchor trajectory in the embedding space; when g(Ta, T
d
l)−

f(Ta, T
d
l) > 0, Ld

a > 0, the embeddings should be adjusted to

enlarge the embedding-based distance of the dissimilar sample

of the anchor. Finally, the loss for the given S is the sum of

the similar and dissimilar samples over all N seeds.

LS =
∑

a∈[1,...,N]

(Ls
a + Ld

a)

Since all the modules and the loss functions are differentiable,

all the parameters in NEUTRAJ can be learned in an end-to-end

manner. In the training process, we update the parameters with

back-propagation through time (BPTT) algorithm and employ

Adam optimizer for stochastic optimization.

VI. DISCUSSIONS

A. Complexity Analysis

The time complexity of NEUTRAJ for computing the simi-

larity of a trajectories pair includes two parts: the embedding

part and the distance computation part. For embedding, the

computation is linear to the number of recurrent operations.

In one time step, the higher-order term of complexity in classic

recurrent units is (m+1)∗d2, where m is the number of gates,

e.g., m = 3 for LSTM. In SAM units, extra computation cost

is involved by a new gate and spatial attention reader which

complexity is also quadratic of d. For a pair of trajectories, d is

a constant and the complexity of distance computation in the

embedding space is a constant. The overall time complexity

of NEUTRAJ is thus linear in the length of the trajectories.

For a trajectory database, the trajectories embeddings only

need to be computed once. When new trajectory similarity

query is conducted, we generate the embedding of new trajec-

tory and preform search based on the distance of embeddings.

So the computation is linear with the size of search space,

which makes NEUTRAJ suitable for large dataset.

B. Theoretical Explanation

Similarity measures are used for mapping trajectory to a

metric space. In order to make NEUTRAJ general for various

of distance measures, we employ a recurrent neural network,

which is well known to be a sufficient approximator for an

arbitrary mapping function [17], to learn an approximate met-

ric spaces via trajectory embeddings. However, the effects of

the neural network module is double-edged. While benefiting

the generic property, NEUTRAJ has no provable theoretical

guarantee of accuracy. We empirically find that NEUTRAJ can

learn a similarity preserving metric space with small size of

seed trajectories.

VII. EXPERIMENT

A. Experimental Settings

1) Datasets.: Our experiments are based on two public

trajectory datasets in two cities: Beijing and Porto. The first

dataset [33], referred Geolife, consists of 17,621 trajectories

of human mobility from 2007 to 2010. The second dataset

[23] consists of over 1.7 millions of taxi trajectories from

2013 to 2014. To moderate the dimensions of M, we choose

trajectories in the center area of the city and discretize the area

into 50m × 50m grid cells. Then, we remove the trajectories

less than 10 records. After such prepossessing, we obtain 8203

trajectories in Geolife and 601,071 trajectories in Porto1.

2) Experimental Protocol: To evaluate the performance

of NEUTRAJ, we study top-k similarity search problem on

both Geolife and Porto datasets and evaluate NEUTRAJ under

four distance measures: the Fréchet distance, the Hausdorff

distance, Edit distance with Real Plenty(ERP) and Dynamic

Time Warping (DTW). The first three are metric, namely the

distance is symmetric and satisfies the triangle inequality. We

thus learn the models to approximate the metrics directly.

However, the DTW distance is not a metric. Experiments on

DTW explore the performance of NEUTRAJ on non-metric

similarity measure.

The ground-truth of the problem is the exact top-k results

based on the accurate similarity. For Geolife, we compute the

accurate similarity of all trajectory pairs and random choose

20% trajectories as the seeds to train NEUTRAJ. Additionally,

10% trajectories are used for tuning parameters and 70% are

used for testing. For Proto, due to the enormous trajectories, it

is impractical to compute the exact similarity of all trajectory

pairs directly. We random choose 10k trajectories to compute

the similarity and follow the experimental protocol as the same

as Geolife. The performance comparison, efficiency study

and parameter sensitivity study of top-k similarity search are

shown in VII-B VII-C and VII-D. In addition, based on the

well-trained model on 10k Proto trajectories, we conduct a

case study of entire Proto dataset(reported in VII-E) to show

the efficiency and accuracy of NEUTRAJ on large dataset.

To evaluate the effectiveness of NEUTRAJ for computing

pair-wise similarities, we conduct trajectory clustering ex-

periments on both datasets and compare the difference of

cluster results between exact similarities and embedding-based

similarities. We randomly sample 10k trajectories from Porto,

and compute the exact pair-wise similarities as the ground

truth. We utilize DBSCAN, which is the most widely used

density based clustering algorithm on spatial data, to obtain

clustering results and evaluate the difference under four the

clustering metrics: Homogeneity, Completeness, V-measure,

and Adjusted Random Index. Result of trajectory clustering

is shown in VII-F

We also conduct a zero shot learning task to test whether

NEUTRAJ works well on a city which has no available trajec-

tories but just the road networks. Based on the road networks

1Code and data available at https://github.com/yaodi833/NeuTraj

1364

TABLE II
PERFORMANCE COMPARISON FOR DIFFERENT METHODS ON FRÉCHET, HAUSDORFF, ERP AND DTW DISTANCES.

Note: HR is the hitting ratio; R10@50 is the top-50 recall for the top-10 ground truth; δH10 is the distortion of average distance on the top 10 results; δR10 is the
top 10 recall in top 50 result. The ground truth of top-10 average distance of Fréchet and Hausdorff distances are: 1044m and 730m(Geolife), 1044m distortion of
average distance and 730m(Geolife); 935m and 679m(Porto); the element unit of δH10/δR10 is meters.

Fréchet Hausdorff ERP DTW
Data Method HR@10 HR@50 R10@50 δH10/δR10 HR@10 HR@50 R10@50 δH10/δR10 HR@10 HR@50 R10@50 HR@10 HR@50 R10@50

Geolife
AP 0.2374 0.2542 0.5290 213/87 0.2967 0.3180 0.5363 217/113 — — — 0.3870 0.4268 0.7139

Siamese 0.4631 0.6032 0.8121 162/34 0.3120 0.4236 0.6640 199/69 0.5787 0.7363 0.8964 0.2680 0.4582 0.6172
NEUTRAJ 0.4947 0.6786 0.8403 84/18 0.3691 0.4870 0.7416 152/42 0.6137 0.7780 0.9424 0.3067 0.4832 0.6513

Porto
AP 0.2542 0.2851 0.5520 208/79 0.2832 0.2966 0.5620 201/86 — — — 0.3798 0.4160 0.7010

Siamese 0.4740 0.5802 0.7970 128/27 0.3834 0.4999 0.7760 165/48 0.4982 0.6893 0.9043 0.3832 0.4804 0.7602
NEUTRAJ 0.5225 0.6351 0.8292 89/ 8 0.4372 0.5714 0.8089 101/15 0.5427 0.7297 0.9277 0.4370 0.5613 0.8396

TABLE III
RESULTS OF ABLATION EXPERIMENTS FOR DIFFERENT METHODS ON FRÉCHET, HAUSDORFF, ERP AND DTW DISTANCES.

Fréchet Hausdorff ERP DTW
Data Method HR@10 HR@50 R10@50 δH10/δR10 HR@10 HR@50 R10@50 δH10/δR10 HR@10 HR@50 R10@50 HR@10 HR@50 R10@50

Geolife
NT-NO-WS 0.4736 0.6353 0.7996 139/27 0.3338 0.4393 0.6273 169/55 0.5880 0.7170 0.8686 0.2591 0.4610 0.6260

NT-NO-SAM 0.4842 0.6483 0.8198 117/23 0.3574 0.4607 0.7219 157/46 0.6090 0.7537 0.9291 0.2881 0.4792 0.6482
NEUTRAJ 0.4947 0.6786 0.8403 84/18 0.3691 0.4870 0.7416 152/42 0.6137 0.7780 0.9424 0.3067 0.4832 0.6513

Porto
NT-NO-WS 0.4990 0.5883 0.7981 102/10 0.4190 0.5628 0.7909 140/33 0.5192 0.6920 0.8917 0.3930 0.5013 0.7919

NT-NO-SAM 0.5154 0.6121 0.8171 92/10 0.4238 0.5691 0.8033 126/16 0.5382 0.7111 0.9107 0.4238 0.5425 0.8148
NEUTRAJ 0.5225 0.6351 0.8292 89/ 8 0.4372 0.5714 0.8089 101/15 0.5427 0.7297 0.9277 0.4370 0.5613 0.8396

in Beijing [32], we simulate 6000 synthetic trajectories as the

seeds for training and test NEUTRAJ with the real trajectories

in Geolife. Result of zero short learning is presented in VII-G.
3) Compared Methods: For the studied four measures, we

compare NEUTRAJ with four baselines, which can be roughly

divided into three categories:

• Approximate algorithms: Except ERP which has no ap-

proximate algorithm, each of the three measures has several

approximate algorithms to fast compute them. We compare

with the state-of-the-art approximate algorithms from [12]

which is used for computing both Fréchet and DTW

distances, and [4] which is used for Hausdorff distance. We

call these algorithms as AP in general for all the distance

measures.

• Siamese Network [24]: This category is a metric learning

approach based on the Siamese network. We instantiate the

Siamese network with LSTM backbone, and denote it as

Siamese.

• Ablations: Finally, we include two kinds of ablations

of NEUTRAJ. (1) The weight sampling in NEUTRAJ is

replaced by random sampling to test the effectiveness of

distance-weighted ranking loss. We denote this variant

as NT-NO-WS, respectively. (2) We replace the SAM

unit with standard LSTM, denoted as NT-NO-SAM, to

test the effects of the proposed spatial attention memory

mechanism.

4) Evaluation Metrics: We use three different metrics for

performance evaluation. The first is the top-k hitting ratio,

which examines the overlap percentage of the top-k results

and the ground truth. We report the hitting ratio for both top-

10 (HR@10) and top-50 searches (HR@50). The second is

the top-50 recall for the top-10 ground truth (R10@50). This

one evaluates how many of top 10 ground-truth trajectories are

recovered by the top 50 lists produced by different methods.

The third metric is the distortion of average distance for the

top-10 results, denoted as δH10 and δR10. δH10 is computed

based on the top-10 trajectories from the results and δR10

is based on the top-10 most similar trajectories from top-50

results. They measure the distortion of average exact distances

between the query trajectory and the top-10 search results. The

smaller the distance is, the stronger a method performs.

5) Parameter Settings: The key parameters in NEUTRAJ

include: (1) the embedding dimension d; (2) the scan width

w of the attention memory reader. We have tuned d by the

grid search in range {16, 32, 64, 128, 256}. In general, the

performance increases with d and gradually stabilizes when

it is large enough. For w, we tuned it in {0, 1, 2, 3, 4} and

found that it had an optimal value as w = 2 on both datasets.

Finally, we set d = 128 and w = 2. In addition, we set

the batch sizes as 20 and the sampling size n as 10. For

the compared methods, we tuned their parameters to obtain

the best performance in our datasets. We will also report the

parameter study results in Section VII-D.

B. Performance Comparison

Table II shows the performance of different methods for

the top-k similarity search task. As shown, on both datasets,

NEUTRAJ significantly outperforms all the baseline methods

in most of metrics. Take the Fréchet distance as an example.

Compared with state-of-the-art approximate algorithms (AP),

the variant of NEUTRAJ, i.e., NEUTRAJ achieve more than

two time higher hitting ratios, about 70% gain in R10@50,

and about 69% reductions in average distance. Such huge

improvements is impressive given the fact that NEUTRAJ does

not rely on any hand-crafted heuristics but learns the similarity

function automatically from seed trajectories. The superiority

of NEUTRAJ over the Siamese network is also obvious in all

the four metrics. While both methods employ neural metric

learning for approximating the similarity function, NEUTRAJ

has two advantages over the Siamese network. First, the

weighted sampling and ranking loss can yield more distin-

guishing trajectories and training loss compared to Siamese

network. Second, the spatial attention memory module models

the correlation between spatially close trajectories, which is

1365

very beneficial for generating trajectory embedding of high

quality. Among the four distances, the performance of DTW is

inferior to other three. The reason is that the distance of learnt

embeddings is a metric while DTW is not. This systematic

error limits NEUTRAJ effectively performing on DTW.

The results of ablation experiments are shown in Table III.

Comparing NEUTRAJ with its ablations, one can further see

the effectiveness of the two major modules in NEUTRAJ.

Continue using the Fréchet distance on the Geolife dataset

as an example. We observe: (1) by including the SAM

module, NEUTRAJ improves HR@10 of NT-NO-WS from

0.46 to 0.47; and (2) by including the weighted sampling and

optimization module, NEUTRAJ improves the HR@10 of NT-

NO-WS from 0.47 to 0.49. The trend is similar for the Porto

dataset and other three similarity measures.

The absolute values of HR@10 and HR@50 seem not very

high on both datasets. The reason is that trajectories in both

datasets have lots of near-duplicate instances. This can be

observed from δH10, which measures the spatial closeness for

both the top-10 ground truth and the generated top-10 list.

C. Efficiency Study

In this subsection, we study the efficiency of NEUTRAJ. We

first report its time cost for online similarity search, and then

report the offline time cost for training the NEUTRAJ model.

The experiments are conducted on a machine with Inter Xeon

E5 @2.20GHz CPU and one Nvidia P100 GPU.

TABLE IV
TIME COST FOR ONLINE SIMILARITY SEARCH WITHOUT INDEX.

Method 1k 5k 10k 200k
Fréchet

BruteForce 8.712s 41.876s 84.480s 1639.834s
AP 1.840s 11.319s 23.107s 532.652s

NT-NO-SAM 0.461s 0.471s 0.489s 1.576s
NEUTRAJ 0.461s 0.470s 0.490s 1.574s

Hausdorff
BruteForce 0.238s 1.416s 2.981s 51.642s

AP 0.127s 0.154s 0.179s 3.426s
NT-NO-SAM 0.026s 0.046 0.072s 1.133s

NEUTRAJ 0.024s 0.047 0.073s 1.131s
ERP

BruteForce 0.409s 1.982s 3.807s 73.054s
NT-NO-SAM 0.027s 0.046s 0.081s 1.154s

NEUTRAJ 0.026s 0.047s 0.081s 1.152s
DTW

BruteForce 0.305s 1.482s 3.070s 59.054s
AP 0.119s 0.142s 0.185s 4.021s

NT-NO-SAM 0.023s 0.044s 0.066s 1.028s
NEUTRAJ 0.021s 0.043s 0.067s 1.027s

1) Time Cost of Online Similarity Search: Similarity
Search without Index. Table IV shows the time cost of

NEUTRAJ for performing top-k similarity search with different

sizes. Specifically, from the test set of Porto, we randomly

sample four sub-corpora with sizes 1K, 5K, 10K, and 200K

respectively. Then we use NEUTRAJ to perform top-50 sim-

ilarity for each trajectory and re-rank the 50 trajectories by

calculating their accurate distance. Table IV reports the aver-

age time cost for processing one query. We compare it with the

BruteForce method that directly computes the exact distances

following the definition, state-of-the-art approximate algo-

rithms (AP), as well as the neural network based methods(NT-

NO-SAM). We omit the results of NT-NO-WS and Siamese

methods because the time cost of NT-NO-WS and Siamese

methods are analogous to NEUTRAJ and NT-NO-SAM in

online search procedure. As shown in Table IV, for all the

four measures, NEUTRAJ achieves 50x-1500x speedup over

BruteForce and 2x -500x speedup over existing approximate

algorithms. The speedup ratios are especially significant for

large datasets. The time cost of ablation methods NT-NO-

SAM is very close to NEUTRAJ because the embedding time

difference of one search trajectory is small.

TABLE V
TIME COST FOR ONLINE SIMILARITY SEARCH WITH INDEX

Method 1k 5k 10k 200k
Bounding Box R-tree Index

BruteForce 5.526s 27.802s 54.558s 1070.433s
AP 0.438s 1.731 4.372s 62.853s

NEUTRAJ 0.005s 0.029 0.056s 0.868s
of involved trajectories 675 3377 6736 134051

Grid-based Inverted Index
BruteForce 5.633s 27.793s 54.993s 1098.042s

AP 0.460s 1.911 4.722s 66.072s
NEUTRAJ 0.006s 0.030 0.065s 1.173s

of involved trajectories 685 3424 6834 136201

Similarity Search with Index. In this experiment, we

employ two widely used indexing techniques: 1) bounding

box r-tree; 2) grid based inverted index, and random select

200 query trajectories to examine the elastic character of

NEUTRAJ. Under the Fréchet distance, we compare index-

extended NEUTRAJ with two baselines: brute force method

and approximate algorithm, on various sub-corpora. The aver-

age time costs are reported in Table V. We find that NEUTRAJ

outperforms the baselines under the two indexing structures

and achieves over 30x speedup compared with the approximate

algorithm. Similar trend can be observed on other measures.

TABLE VI
TIME COST FOR OFFLINE MODEL TRAINING.

Methods
Model Train Embedding

tepoch #epoch ttotal 200k
Siamese 164s 71 11644s 411s

NEUTRAJ 285s 15 5130s 639s
Ablations Experiments

NT-NO-SAM 168s 15 2520s 412s
NT-NO-WS 283s 20 5660s 636s

2) Time Cost of Offline Training and Embedding: Offline
Training Time. Table VI shows the comparison of offline

training time on the Porto dataset under the Fréchet distance

for other similarity measures. For 2,000 training trajectories,

NEUTRAJ converges within 20 epochs. The training time

of one epoch is around 5 min for NEUTRAJ, and thus the

entire training time of NEUTRAJ is less then 2 hours. In

contrast, the Siamese network takes more than 60 epochs to

converge, which is about 3X slower than NEUTRAJ. We also

compare the convergence rate of NEUTRAJ and NT-NO-SAM

in Figure 5 and observe that NEUTRAJ has higher convergence

rate than NT-NO-SAM because SAM module captures useful

information from processed trajectories.

1366

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

n Epoches

0.20

0.50

0.80

T
o
p
1
0
H
it
ti
n
g
R
ad

io

Fr’echet Distance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

n Epoches

0.20

0.50

0.80

T
o
p
1
0
H
it
ti
n
g
R
ad

io

Hausdorff Distance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

n Epoches

0.20

0.50

0.80

T
o
p
1
0
H
it
ti
n
g
R
ad

io

ERP Distance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

n Epoches

0.20

0.50

0.80

T
o
p
1
0
H
it
ti
n
g
R
ad

io

DTW Distance

NeuTraj

NT-No-SAM

Fig. 5. The convergence curve of NEUTRAJ and NT-NO-SAM on Fréchet, Hausdorff, ERP and DTW with respect to 20 epochs.

0.5k 2k 4k 6k 8k

Num of Training Time Series

0.2

0.3

0.4

0.5

0.6

0.7

T
op

10
H
it
ti
n
g
R
ad
io

Fr’echet Distance

0.5k 2k 4k 6k 8k

Num of Training Time Series

0.2

0.3

0.4

0.5

0.6

0.7

T
op

10
H
it
ti
n
g
R
ad
io

Hausdorff Distance

0.5k 2k 4k 6k 8k

Num of Training Time Series

0.2

0.3

0.4

0.5

0.6

0.7

T
op

10
H
it
ti
n
g
R
ad
io

ERP Distance

0.5k 2k 4k 6k 8k

Num of Training Time Series

0.2

0.3

0.4

0.5

0.6

0.7

T
op

10
H
it
ti
n
g
R
ad
io

DTW Distance

NeuTraj

NT-No-SAM

Fig. 6. HR@10 of NEUTRAJ and NT-NO-SAM on Fréchet, Hausdorff and DTW with varying training data size.

8 16 32 64 128 256

Embedding Dimension d

0.2

0.3

0.4

0.5

0.6

0.7

T
op

10
H
it
ti
n
g
R
ad
io

Fr’echet Distance

8 16 32 64 128 256

Embedding Dimension d

0.2

0.3

0.4

0.5

0.6

0.7

T
op

10
H
it
ti
n
g
R
ad
io

Hausdorff Distance

8 16 32 64 128 256

Embedding Dimension d

0.2

0.3

0.4

0.5

0.6

0.7

T
op

10
H
it
ti
n
g
R
ad
io

ERP Distance

8 16 32 64 128 256

Embedding Dimension d

0.2

0.3

0.4

0.5

0.6

0.7

T
op

10
H
it
ti
n
g
R
ad
io

DTW Distance

NeuTraj

NT-No-SAM

Fig. 7. HR@10 of NEUTRAJ and NT-NO-SAM on Fréchet, Hausdorff and DTW with varying embedding size d.

Offline Embedding Time. Another part of offline training

is the embedding procedure which generates the embeddings

of trajectories by using the well-trained model. In this experi-

ment, we set the embedding batch size as 2000 and report the

time cost of embedding 200k trajectories. The results of all

neutral network based methods are shown in Table VI. We can

easily find that SAM unit based methods(NEUTRAJ, NT-NO-

WS) are little slower than standard unit based method(NT-

NO-SAM, Siamese). The reason is SAM unit need more

calculation for finding useful information in memory tensor.

D. Parameter Sensitivity Study

In this subsection, we evaluate the sensitivity of NEUTRAJ

on three parameters: the training data size, the scan width w,

and the embedding dimension d. Due to the space limitation,

we only shows the experimental result on the Porto dataset.

1) The sensitivity of training data size: We first investigate

the effect of the number of seed trajectories on the perfor-

mance of NEUTRAJ. Figure 6 shows the results of NEUTRAJ

and its ablation NT-NO-SAM for the four measures as we

vary the training data size from 500 to 8,000 on Porto.

As shown, the performance of NEUTRAJ becomes relatively

stable when there are more than 2,000 training trajectories. We

also observe that SAM-based models outperform the NT-NO-

SAM models. Another interesting fact is that NEUTRAJ is

more robust than NT-NO-SAM with sparse training data. As

shown, when the number of training trajectories is only 500,

the performance gap between NEUTRAJ and NT-NO-SAM is

particularly large. This is because SAM employs a memory

tensor to memorize useful information from processed trajec-

tories.

2) The sensitivity of embedding dimension d: We proceed

to study the effect of the embedding dimension d on the perfor-

mance of NEUTRAJ. Figure 7 illustrates HR@10 as we vary

d from 8 to 256. As shown, the performance of NEUTRAJ and

its variants first increases and then drops slightly. The reason is

the parameter d controls the complexity of NEUTRAJ. When d
increases, the model enjoys more expressive power to capture

the intrinsic structures of trajectories. However, when d is too

large, the model suffers from over-fitting due to the limited

size of training data.

3) The sensitivity of scan width w: Finally, the scan width

w in the SAM module is a key parameter that controls the

exploration spread for historical trajectories. As shown in

Figure 8, with the increase of w, the HR@10 for all methods

first increases and then slightly drops. This phenomenon is

1367

0 1 2 3 4

Scanning Bandwidth w

0.30

0.45

0.60

T
op

10
H
it
ti
ng

R
ad
io

NeuTrajFre

NeuTrajHau

NeuTrajDTW

NeuTrajERP

Fig. 8. HR@10 of NEUTRAJ with varying w.

attributed to two reasons: (1) as w increases, more information

tends to be accessed by the SAM reader, which is useful for

encoding the current trajectory in the initial stage; (2) when w
is too large, the information of some non-relevant trajectories

will be inevitably incorporated. Even if the attention mecha-

nism in NEUTRAJ can help reduce this effect, the performance

of the model can still be harmed.

E. Case Studies

We use the entire Porto dataset to perform several case

studies to intuitively examine the top-k search results of

our model. For this purpose, we randomly choose several

trajectories and retrieve their top-5 neighbors under the Fréchet

distance. Due to the space limitation, Table VII only shows

the results of two representative trajectories: T91 and T65 . For

each query, we plot both the top-3 ground truth trajectories as

well as the top-3 trajectories retrieved by NEUTRAJ.

The result shows that NEUTRAJ is quite effective on both

short(T91) and long(T65) trajectory: the results returned by

NEUTRAJ match the ground truth very well, and the distor-

tions of top-5 average distance δH5 are very small. Moreover,

by training with the weighted ranking loss, NEUTRAJ pre-

serves the ranking order of trajectories.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ε(10−2)

0

40

80

N
u
m
b
er

of
C
lu
st
er
s

Number of Clusters on Porto

Ground Truth

NeuTraj

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ε(10−2)

0

0.5

1.0

M
et
ri
c
V
al
u
e

Clustering Metric Values on Porto

Homogeneity

Completeness

V-measure

Adjusted Rand Index

Fig. 9. Trajectory Clustering Result.

F. Result of Trajectory Clustering

In this experiment, we aim at exploring the effectiveness

of NEUTRAJ via trajectory clustering. Due to the space

limitation, we only show the clustering result of DBSCAN

using Fréchet distance on Porto dataset and compare the two

cluster results which are generated by the ground truth distance

and embedding based distance. As shown in Figure 9, fixing

the minimum points as 10, the number of clusters of the two

results change similarly with the increase of ε. Best values

Frechet Hausdorff ERP DTW

Distance measures

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
re
fo
rm

an
ce

R
at
io

Best HR@10

Zero HR@10

Best R10@50

Zero R10@50

Fig. 10. Illustration of zero-shot learning results on Geolife dataset. Best is
the best performance NEUTRAJ can achieve on real dataset and Zero is the
performance trained with synthetic data.

of the evaluation metrics are more than 0.8, which indicates

NEUTRAJ works well on this task. Similar trends are observed

on other three distance measures and Geolife dataset.

G. Evaluation on Zero-Shot Learning

In the final set of experiments, we are interested in applying

NEUTRAJ for zero-shot learning scenarios. Specifically, the

NEUTRAJ model relies on a real trajectory database and

sampling seeds from the database as guidance. It is interesting

to investigate: how NEUTRAJ perform if there are no real

seed trajectories? For this purpose, we extend NEUTRAJ for

the zero-shot learning scenario. We assume there exists no

trajectory databases but only a road network of the target

area. Then we generate a bunch of simulated trajectories

as our seeds and train the NEUTRAJ model for computing

the similarity for a pair of real trajectories. Based on the

road network in Beijing [32], we generate 6,000 synthetic

trajectories by employing random walk on road node graph

and interpolating coordinates between the nodes. Then we take

the synthetic trajectories as the seeds to train NEUTRAJ, and

test it with the real trajectories from Geolife. Figure 10 shows

the HR@10 and R10@50 of NEUTRAJ.

Impressively, even using synthetic trajectories and their

distances as guidance, NEUTRAJ can still achieve around 0.7

recall for all the four metrics. Such a phenomenon indicates

that NEUTRAJ can be applied to scenarios even when no real

trajectory databases are available.

VIII. CONCLUSION

We proposed a seed-guided neural metric learning ap-

proach NEUTRAJ that is fast, accurate, generic and elastic

for trajectory similarity computation. Its novelty lies on two

aspects: (1) a spatial attention memory (SAM) module that can

augment existing RNN architectures to capture the correlations

between trajectories; and (2) a distance-weighted ranking loss

that effectively leverages seed information to learn trajectory

embeddings of high quality. Experiments on two real-life

datasets have shown that NEUTRAJ can effectively accelerate

on various distance measures, while producing more accurate

function approximations over state-of-the-art baselines.

Several interesting problems exist for future exploration.

First, NEUTRAJ mainly focuses on two-dimensional trajec-

tories. It is interesting to extend NEUTRAJ for trajectories

1368

TABLE VII
COMPARISON OF TOP-3 SIMILAR TRAJECTORIES BETWEEN GROUND TRUTH(GT) AND NEUTRAJ.

Result of T91: HR@10: 0.7; HR@50: 0.78; H10@R50: 0.9; δH5 = 4m; δH10 = 4m; δR10 = 2m
Query Trajectory Top-3 ground truth. Top-3 of NEUTRAJ.

Result of T65: HR@10: 0.4; HR@50: 0.52; H10@R50: 0.8; δH5 = 296m; δH10 = 236m; δR10 = 62m
Query Trajectory Top-3 ground truth. Top-3 of NEUTRAJ.

with time dimension. Second, NEUTRAJ is designed for

accelerating similarity computation of trajectory pairs and only

suits for similarity based queries. It would be interesting to

investigate new models to handle other types of query, such

as range query and boolean query.

ACKNOWLEDGMENT

Acknowledgment: The work was done when Di Yao visited

NTU. Gao Cong is supported in part by a MOE Tier-2 grant

MOE2016-T2-1-137, a MOE Tier-1 grant RG31/17, and a

grant from Microsoft. This work was supposed by the National

Natural Science Foundation of China(Grant No.61472403,

61303243, 61702470).

REFERENCES

[1] P. K. Agarwal, K. Fox, J. Pan, and R. Ying, “Approximating dynamic
time warping and edit distance for a pair of point sequences,” in
SoCG’16, 2016, pp. 6:1–6:16.

[2] H. Alt and M. Godau, “Computing the fréchet distance between two
polygonal curves,” Int. J. Comput. Geometry Appl., vol. 5, pp. 75–91,
1995.

[3] S. Atev, G. Miller, and N. P. Papanikolopoulos, “Clustering of vehicle
trajectories,” IEEE Trans. Intelligent Transportation Systems, vol. 11,
no. 3, pp. 647–657, 2010.

[4] A. Backurs and A. Sidiropoulos, “Constant-distortion embeddings
of hausdorff metrics into constant-dimensional l p spaces,” in AP-
PROX/RANDOM’16, 2016, pp. 1:1–1:15.

[5] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature
verification using a siamese time delay neural network,” in NIPS’93,
1993, pp. 737–744.

[6] K. Buchin, M. Buchin, D. Duran, B. T. Fasy, R. Jacobs, V. Sacristán,
R. I. Silveira, F. Staals, and C. Wenk, “Clustering trajectories for map
construction,” in SIGSPATIAL’17, 2017, pp. 14:1–14:10.

[7] Z. Cao, T. Qin, T. Liu, M. Tsai, and H. Li, “Learning to rank: from
pairwise approach to listwise approach,” in ICML’07, 2007, pp. 129–
136.

[8] S. Chandar, S. Ahn, H. Larochelle, P. Vincent, G. Tesauro, and Y. Ben-
gio, “Hierarchical memory networks,” arXiv:1605.07427, 2016.

[9] L. Chen and R. T. Ng, “On the marriage of lp-norms and edit distance,”
in VLDB’04, 2004, pp. 792–803.

[10] L. Chen, M. T. Özsu, and V. Oria, “Robust and fast similarity search
for moving object trajectories,” in SIGMOD’05, 2005, pp. 491–502.

[11] Z. Chen, H. T. Shen, X. Zhou, Y. Zheng, and X. Xie, “Searching
trajectories by locations: an efficiency study,” in SIGMOD’10, 2010,
pp. 255–266.

[12] A. Driemel and F. Silvestri, “Locality-sensitive hashing of curves,” in
SoCG’17, 2017, pp. 37:1–37:16.

[13] M. Farach-Colton and P. Indyk, “Approximate nearest neighbor algo-
rithms for hausdorff metrics via embeddings,” in FOCS’99, 1999, pp.
171–180.

[14] X. Gong, Y. Xiong, W. Huang, L. Chen, Q. Lu, and Y. Hu, “Fast
similarity search of multi-dimensional time series via segment rotation,”
in DASFAA’15, 2015, pp. 108–124.

[15] M. G. Gowanlock and H. Casanova, “Distance threshold similarity
searches: Efficient trajectory indexing on the GPU,” IEEE TPDS.,
vol. 27, no. 9, pp. 2533–2545, 2016.

[16] A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,”
arXiv:1410.5401, 2014.

[17] V. Kreinovich, “Arbitrary nonlinearity is sufficient to represent
all functions by neural networks: A theorem,” Neural Networks,
vol. 4, no. 3, pp. 381–383, 1991. [Online]. Available:
https://doi.org/10.1016/0893-6080(91)90074-F

[18] R. Laxhammar and G. Falkman, “Online learning and sequential
anomaly detection in trajectories,” IEEE TPAMI., vol. 36, no. 6, pp.
1158–1173, 2014.

[19] T. Lee and S. Lee, “OMT: overlap minimizing top-down bulk loading
algorithm for r-tree,” in CAiSE’03, 2003.

[20] X. Li, K. Zhao, G. Cong, C. S. Jensen, and W. Wei, “Deep representation
learning for trajectory similarity computation,” in ICDE’18, 2018.

[21] R. Manmatha, C. Wu, A. J. Smola, and P. Krähenbühl, “Sampling
matters in deep embedding learning,” in ICCV’17, 2017, pp. 2859–2867.

[22] B. McFee and G. R. G. Lanckriet, “Metric learning to rank,” in ICML’10,
2010, pp. 775–782.

[23] L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-Moreira, and
L. Damas, “Time-evolving O-D matrix estimation using high-speed GPS
data streams,” Expert Syst. Appl., vol. 44, pp. 275–288, 2016.

[24] W. Pei, D. M. J. Tax, and L. van der Maaten, “Modeling time series
similarity with siamese recurrent networks,” arXiv, vol. abs/1603.04713,
2016. [Online]. Available: http://arxiv.org/abs/1603.04713

[25] Q. Qian, R. Jin, S. Zhu, and Y. Lin, “Fine-grained visual categorization
via multi-stage metric learning,” in CVPR’15, 2015, pp. 3716–3724.

[26] T. Rakthanmanon, B. J. L. Campana, A. Mueen, G. E. A. P. A. Batista,
M. B. Westover, Q. Zhu, J. Zakaria, and E. J. Keogh, “Searching
and mining trillions of time series subsequences under dynamic time
warping,” in KDD ’12, 2012, pp. 262–270.

[27] S. Shang, L. Chen, Z. Wei, C. S. Jensen, K. Zheng, and P. Kalnis,
“Trajectory similarity join in spatial networks,” PVLDB, vol. 10, no. 11,
pp. 1178–1189, 2017.

[28] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus, “End-to-end memory
networks,” in NIPS’15, 2015, pp. 2440–2448.

[29] J. Weston, S. Chopra, and A. Bordes, “Memory networks,” arXiv, vol.
abs/1410.3916, 2014.

[30] D. Xie, F. Li, and J. M. Phillips, “Distributed trajectory similarity
search,” PVLDB’17, vol. 10, no. 11, pp. 1478–1489, 2017.

[31] B. Yi, H. V. Jagadish, and C. Faloutsos, “Efficient retrieval of similar
time sequences under time warping,” in ICDE’98, 1998, pp. 201–208.

[32] X. Zhan, S. V. Ukkusuri, and P. S. C. Rao, “Dynamics of functional
failures and recovery in complex road networks,” Physical Review E,
vol. 96, no. 5, p. 052301, 2017.

[33] Y. Zheng, X. Xie, and W. Ma, “Geolife: A collaborative social network-
ing service among user, location and trajectory,” IEEE Data Eng. Bull.,
vol. 33, no. 2, pp. 32–39, 2010.

1369

