
Few-shot Learning for Trajectory-based Mobile Game Cheating
Detection

Yueyang Su
Institute of Computing Technology,

Chinese Academy of Sciences
University of Chinese Academy of

Sciences, China
suyueyang19b@ict.ac.cn

Di Yao∗
Institute of Computing Technology,
Chinese Academy of Sciences, China

yaodi@ict.ac.cn

Xiaokai Chu
Wenbin Li

Institute of Computing Technology,
Chinese Academy of Sciences

University of Chinese Academy of
Sciences, China

chuxiaokai@ict.ac.cn
liwenbin20z@ict.ac.cn

Jingping Bi∗
Institute of Computing Technology,
Chinese Academy of Sciences, China

bjp@ict.ac.cn

Shiwei Zhao
NetEase Fuxi AI Lab, China

zhaoshiwei@corp.netease.com

Runze Wu
NetEase Fuxi AI Lab, China
wurunze1@corp.netease.com

Shize Zhang
NetEase Fuxi AI Lab, China

zhangshize@corp.netease.com

Jianrong Tao
NetEase Fuxi AI Lab, China

hztaojianrong@corp.netease.com

Hao Deng
NetEase Fuxi AI Lab, China

denghao02@corp.netease.com

ABSTRACT
With the emerging of smartphones, mobile games have attracted
billions of players and occupied most of the share for game com-
panies. On the other hand, mobile game cheating, aiming to gain
improper advantages by using programs that simulate the players’
inputs, severely damages the game’s fairness and harms the user
experience. Therefore, detecting mobile game cheating is of great
importance for mobile game companies. Many PC game-oriented
cheating detection methods have been proposed in the past decades,
however, they can not be directly adopted in mobile games due to
the concern of privacy, power, and memory limitations of mobile
devices. Even worse, in practice, the cheating programs are quickly
updated, leading to the label scarcity for novel cheating patterns.
To handle such issues, we in this paper introduce a mobile game
cheating detection framework, namely FCDGame, to detect the
cheats under the few-shot learning framework. FCDGame only
consumes the screen sensor data, recording users’ touch trajecto-
ries, which is less sensitive and more general for almost all mobile
games. Moreover, a Hierarchical Trajectory Encoder and a Cross-
pattern Meta Learner are designed in FCDGame to capture the
intrinsic characters of mobile games and solve the label scarcity
problem, respectively. Extensive experiments on two real online
games show that FCDGame achieves almost 10% improvements in
detection accuracy with only few fine-tuned samples.

∗Corresponding authors.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

KDD ’22, August 14–18, 2022, Washington, DC, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9385-0/22/08.
https://doi.org/10.1145/3534678.3539157

CCS CONCEPTS
• Computing methodologies→Machine learning; Anomaly
detection.

KEYWORDS
Mobile Game, Cheating Detection, Few-shot Learning
ACM Reference Format:
Yueyang Su, Di Yao, Xiaokai Chu, Wenbin Li, Jingping Bi, Shiwei Zhao,
Runze Wu, Shize Zhang, Jianrong Tao, and Hao Deng. 2022. Few-shot
Learning for Trajectory-based Mobile Game Cheating Detection. In Pro-
ceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD ’22), August 14–18, 2022, Washington, DC, USA. ACM,
Washington, DC, USA, 9 pages. https://doi.org/10.1145/3534678.3539157

1 INTRODUCTION
With the popularity of the commonly-used smart phones, recent
years have witnessed a prosperous development of the online mo-
bile games. Nowadays, mobile games represent one of the largest
and fastest-growing Internet business sectors. For example, accord-
ing to the research report released by Newzoo 1, the total number
of mobile game players has exceeded two billion across the world
and the revenues will reach 116.4 billion dollars in 2024.

Despite the glories, the game companies always have to face the
attacks from the game cheating programs. The currency and items
acquired in games can be sold to other players for real profits. Thus
many cheating activities generated by automated game bots are
observed in almost all online games, bringing in incalculable loss
for the game companies. Therefore, how to detect such cheating
activities and building a healthy game environment have always
been a vital and essential problem for many companies.

Many research attentions have been attracted to game cheating
detection [4, 13] in the past decades. Existing works can be roughly
1https://newzoo.com/products/reports/global-mobile-market-report/

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3534678.3539157
https://doi.org/10.1145/3534678.3539157

KDD ’22, August 14–18, 2022, Washington, DC, USA Yueyang Su et al.

categorized into two groups, i.e., traditional approaches [10, 26]
and machine learning-based approaches [12, 21]. Traditional ap-
proaches usually maintain a blacklist of game bot processes by
aggregating knowledge from experts, where players along with the
blocked processes would be detected as the cheats. However, these
methods heavily rely on the prior knowledge of experts and can not
be generalized to different games. Recent years have also witnessed
a trend in machine learning-based cheating detection. Sadly, most
of them are designed for PC games and rely on sufficient labeled
samples for (semi)-supervised model learning.

Different from PC games, due to the temptation of huge profit,
cheats in mobile games are changing fast, and the newly-captured
cheating samples usually never appear in the cheating list before.
That is to say, we usually have to face a problem of few-shotmobile
game cheating detection, i.e., only few labeled samples available
for the model adaptation when detecting novel cheating samples.
Thus, existing methods can not be directly translated into mobile
games. It is non-trivial to handle the cheating detection problem in
mobile games. The reasons lie in the following two aspects:
• Data Privacy. Unlike PC games, mobile devices contain much
sensitive information including locations, communications,
and photographs. Requesting authorities for accessing such
data is unacceptable for mobile game players. Therefore, in
most cases, only the screen sensor data [14], which records
the finger positions and events(e.g., click,drag), is feasible in
mobile games for cheating detection.
• Label Scarcity. New cheating patterns are emerging quickly
in mobile games while the detection should be conducted
timely. It is intractable to obtain sufficient labeled samples
for model training. That is to say, we usually have to face
a few-shot learning problem. Therefore, how to detect
cheating players in few-shot settings is a new problem and
has not been studied.

In this paper, we proposed a Few-shotCheatingDetectionmethod
for mobile Games, namely FCDGame, to systemically solve the prob-
lems mentioned above. In brief, FCDGame is a meta-learning based
framework, which has the following attractive characters:
• Secure. We only study the data collected by the screen sen-
sors, which only records the touch coordinates and event
types on the screen. It is the passive data in mobile games
and would not offend the data privacy of players.
• Low Demand. FCDGame is designed for few-shot cheat-
ing detection. It extracts the common characteristics of pre-
viously detected cheating samples and can adapt to novel
cheating patterns with only 1~5 labeled samples.
• General.As the screen sensor data can be collected in almost
all kinds of mobile games, the proposed model is general for
various games.

To obtain such characters, we model the screen sensor data as
touch trajectories of fingers under a hierarchical deep learning ar-
chitecture. The potential patterns of the trajectories relate to the
users’ operations and are important for cheating detection. How-
ever, unlike traditional trajectory data, e.g., road networks, the
touch trajectories are organized in a more complex hierarchical
structure which makes it difficult to extract patterns. Therefore,
inspired by the natural hierarchical structure of touch trajectories,

we design a meta-learning based model FCDGame with hierarchical
architecture. In detail, FCDGame contains two novel modules, i.e.,
the Hierarchical Trajectory Encoder and the Cross-patterns Meta
Learner. The Hierarchical Trajectory Encoder models the sequen-
tial information of coordinates in each event as a representation
vector and aggregates the vectors to generate the trajectory embed-
ding. The parameters of the encoder are optimized with the Cross-
patterns Meta Learner which is motivated by the meta-learning
framework [8]. Specifically, We adopt the cheating detection on
known patterns as the meta tasks and utilize the labeled samples of
these patterns as supervised information to train a general model
which can quickly adapt to novel cheating detection tasks. The
main contributions are summarized as follows:
• New Task. We define a new task, i.e., few-shot mobile game
cheating detection, which generally exists in almost all mo-
bile games.
• Hierarchical Architecture. Based on the touch trajectory,
we propose a novel hierarchical model FCDGame. It mod-
els the spatio-temporal information in coordinate-wise and
fuses in event-wise to generate trajectory embedding. Our
model not only protects data privacy but also extracts the
common characters from different cheating patterns.
• Real Commercial Data. Extensive experiments on two
real Netease games show that FCDGame achieve state-of-
the-art performance and is general for different games. For
example, we achieve over 80% accuracy in detecting novel
cheating patterns even though the labeled samples available
are limited in 1~5.

2 PRELIMINARY
In this section, we first detail the studied data collected from two
real online games. After that, we give some formal definitions of
cheating detection and translate it into a few-shot learning problem.

2.1 Data description
We collect one-week data (from April 21 to April 27, 2021) from
two mobile games of Netease Inc. 2, and the sampling frequency of
successive coordinates is 400ms. For privacy concerns, we denote
them as Battle and Rookie.
• Battle: There are 507,544 touch trajectories of players, 15,669
of which are labeled as cheats by experts.
• Rookie: The rookie consists of 322,899 touch trajectories,
including 10,305 cheating samples.

Data structure. The touch trajectories are organized as a se-
quence of events which are basic operation units, i.e., click, down-up,
down-click-up, drag, and drag-click. Each event is a sequence of
coordinates with spatial and time information. In order to model the
touch trajectories, it is necessary to model the potential characters
of different events, and a hierarchical model is needed.

Cheating Patterns. The cheating samples in our datasets are
labeled by the experts in Netease product teams. However, the orig-
inal labels are either positive (cheating) or negative (normal). It is
hard to figure out the sub-classes cheating patterns without the
sub-classes of game cheating trajectories. To achieve the detection

2https://game.163.com/

Few-shot Learning for Trajectory-based Mobile Game Cheating Detection KDD ’22, August 14–18, 2022, Washington, DC, USA

(a) Normal Pattern 1 (b) Normal Pattern 2

(c) Cheating Pattern 1 (d) Cheating Pattern 2

(e) Cheating Pattern 3 (f) Cheating Pattern 4

Figure 1: Illustration of several normal and cheating exam-
ples in game Battle.

of novel cheating patterns, we adopt the unsupervised learning
technique, i.e., seq2seq auto-encoder [32] to represent the cheating
trajectories into embedding vectors and employ DBSCAN [3] to
obtain the clusters of the cheating samples. After that, the experts
check the samples in each cluster and find five cheating patterns
which are different from each other. We provide some represen-
tative samples in the game Battle to show the extracted cheating
patterns in Figure 1. As shown in the figure, compared with the nor-
mal patterns in (a) and (b), the cheating patterns are more regular.
However,due to the limited labeled samples and the complexity of
trajectories, it is hard to directly detect by traditional methods, e.g.,
angle-based statistics methods [29]. Among the cheating patterns,
besides the common characters, there are also some differences
which are not only in the easily disturbed features, e.g., angle and
density, but also in the potential features. However, the angle and
density are sensitive to the selected labeled samples and lead to
poor performances of traditional methods in the few-shot settings.
Therefore the potential features are more useful, but they are diffi-
cult to be extracted.

2.2 Problem Definition
Given a dataset of touch trajectories, there usually exist some tra-
jectories which are not likely generated by normal players. The
mobile game cheating detection task is to separate game cheating
trajectories from normal data.

However, the cheating patterns change fast in mobile games.
The labeled samples of novel cheating patterns are hard to obtain.
Therefore, we have to face a few-shot learning problem. The gen-
eral few-shot learning [31] is to transfer the knowledge from an

auxiliary dataset that is different from the task and learn a model
for the target task with a small amount of supervised information.
In our task, we aim to discover cheating samples of novel patterns
with few labeled samples and adopt the labeled samples of known
cheating patterns as the auxiliary dataset.

Formally, we denote a touch trajectory as𝐸 = [(𝑇1, 𝑒1), · · · , (𝑇𝑀 , 𝑒𝑀)],
where each tuple consists of a coordinates sequence and it’s event
type. The coordinates sequence is denoted as𝑇𝑖 = (𝑝1, 𝑝2, · · · , 𝑝𝑁),
and each coordinate 𝑝 𝑗 = (𝑥 𝑗 , 𝑦 𝑗 , 𝑡 𝑗) is a tuple, in which 𝑥 𝑗 and 𝑦 𝑗
are the pixel coordinates and 𝑡 𝑗 is the timestamp of the position 𝑝 𝑗 .

Given the samples of 𝐾𝑝 ground-truth cheating patterns T =

{T1, · · · ,T𝐾𝑝
}, where𝐾𝑝 is the number of known cheat patterns and

T𝑖 ∈ T is a set of labeled touch trajectories 𝐸 with labels 0 (normal)
or 1 (cheating). We assume that samples in T are sufficient. Then
few labeled samples of 𝐾𝑛 novel cheating patterns(for example,
less than 10 samples per class) are used as supervised information
for target tasks, denoted as T𝑛𝑒𝑤 = {T𝑛𝑒𝑤1 , · · · ,T𝑛𝑒𝑤

𝐾𝑛
}. our task

is to detect samples of the 𝐾𝑛 novel cheating patterns with the
information of T𝑛𝑒𝑤 and the knowledge of ground-truth cheating
patterns T .

3 METHODOLOGY
In this section, we detail the proposed FCDGame. As shown in
Figure 2, FCDGame consists of two key components: Hierarchical
Trajectory Encoder and Cross-pattern Meta Learner. The Hierarchi-
cal Trajectory Encoder is proposed to model the spatio-temporal
relations of touch trajectories as well as the hierarchical relation-
ship between coordinates sequences and events sequences. The
Cross-pattern Meta Learner is an optimization strategy that trans-
fers knowledge from ground-truth cheating patterns and guides the
learning of the general meta-model. The meta-model can adapt to
the novel cheating detection task quickly with few labeled samples
of the target pattern.

3.1 Hierarchical Trajectory Encoder
As shown in Figure 3, we propose a hierarchical encoder to cap-
ture both the spatio-temporal information in coordinates sequences
and the correlation of events sequences, namely Hierarchical Tra-
jectory Encoder. Our Hierarchical Trajectory Encoder contains
two procedures: (1) Coordinate-wise trajectory encoding, which
models the spatial and temporal relations of coordinates in each
event; (2) Event-wise trajectory encoding, which takes the output
of Coordinate-wise trajectory encoding as input and captures the
relations in event pairs. Next, we specify the operations in the two
procedures.

3.1.1 Coordinate-wise trajectory encoding. As described in Section
2.1, the original data in touch trajectories are organized by events.
Within each event, the coordinates sequence is captured to deter-
mine the event type, and the correlation of coordinates in the same
event is stronger than those cross events. For example, the coordi-
nates in a drag event are intended to complete a directional move,
and are more relevant compared to the coordinate of the following
click. Thus, it is necessary to mode the coordinate-wise relations
of coordinates in each event.

Suppose the length of the coordinates sequence is 𝑁 , we denote
it as 𝑇 = (𝑝1, 𝑝2, · · · , 𝑝𝑁). Each coordinate 𝑝𝑖 consists of a triad,

KDD ’22, August 14–18, 2022, Washington, DC, USA Yueyang Su et al.

Figure 2: The illustration of FCDGame. FCDGame is trained across multiple known cheating patterns and can be well adapted
to the novel(target) cheating patterns with few labeled samples. Specifically, the Hierarchical Trajectory Encoder is optimized
with Cross-pattern Meta Learner in Meta-Training and the learned parameters are used to initialize the model in Fine-tuning.

i.e., 𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖), which represents the 𝑥 coordinate, 𝑦 coordinate,
and recording time respectively. Since the value of the triad is in
the discrete space, we need to first process it into vectors.

process coordinate. In original data, the coordinate is recorded
as the location of the pixel, which could be various in different
device types with different resolutions. Thus, we employ a min-
max normalization to transform the pixel location into a normalized
range:

𝑥𝑚𝑎𝑥 =𝑚𝑎𝑥 (𝑥1, · · · , 𝑥𝑁); 𝑥𝑚𝑖𝑛 =𝑚𝑖𝑛(𝑥1, · · · , 𝑥𝑁)
𝑦𝑚𝑎𝑥 =𝑚𝑎𝑥 (𝑦1, · · · , 𝑦𝑁); 𝑦𝑚𝑖𝑛 =𝑚𝑖𝑛(𝑦1, · · · , 𝑦𝑁)

𝑓 𝑥𝑖 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
; 𝑓

𝑦

𝑖
=

𝑦𝑖 − 𝑦𝑚𝑖𝑛
𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛

process time. The time 𝑡𝑖 in the triad denotes the absolute time
when sampled, which, however, shows weak relatedness in the
context. On the opposite, the time interval between different coordi-
nates usually contains much useful information that can reflect the
abnormal behaving patterns. For example, in first-person shooter
games (FPS), the time interval between coordinates describes the
reaction time of players. The operations with less reaction time are
impossible to be generated by real players and can be considered
as cheating activities.

Thus, instead of using the absolute time, we employ the time
gaps as the input feature in FCDGame.

𝑓 𝑡𝑖 = 𝑡𝑖 − 𝑡𝑖−1; 𝑓 𝑡1 = 0

Similar to the coordinate features, we also normalize time features
with min-max normalization as:

𝑓 𝑡𝑖 = Normalize(𝑓 𝑡𝑖 ,𝑚𝑎𝑥 (𝑓
𝑡),𝑚𝑖𝑛(𝑓 𝑡))

After that, We concatenate both coordinate features and time fea-
ture as f𝑖 = concat(𝑓 𝑥

𝑖
, 𝑓
𝑦

𝑖
, 𝑓 𝑡
𝑖
), and take it as the input of Coordinate-

wise trajectory encoding.
Then we employ BiLSTM to refine a expressive latent represen-

tation for each trajectory. Formally, a generic BiLSTM hidden layer

updates with the following formulas:
−→
h 𝑖 =

−→
𝑓 (−→h 𝑡−1, f𝑖)

←−
h 𝑖 =

←−
𝑓 (←−h 𝑡+1, f𝑖)

where
−→
𝑓 and

←−
𝑓 are the forward and backward LSTMs,

−→
h 𝑖 and

←−
h 𝑖

are the forward and backward hidden states. Then the hidden state
can be concatenated as h𝑖 = [

−→
h 𝑖 ,
←−
h 𝑖], which captures both the past

and future information in the sequence. In detail, the hidden state
at the last timestamp is used to be the representation of the current
event, denoted by v = 𝑓 (h𝑁−1, 𝑓𝑁).

3.1.2 Event-wise trajectory encoding. For an events sequence 𝐸 =

[(𝑇1, 𝑒1), · · · , (𝑇𝑀 , 𝑒𝑀)], the event type information in each tuple
(𝑇𝑖 , 𝑒𝑖) is also essential to study the patterns of touch trajectories
from the perspective of player’s operation. We encode the event
type information with an embedding matrix. Specifically, for each
event type, we construct a randomly initialized embedding matrix
E ∈ R𝑑×𝑂 , in which 𝑂 is the amount of event types and 𝑑 is the
dimension of the embedding vector.

To refine the representation of the whole touch trajectory, we
conduct the Coordinate-wise trajectory encoding to obtain the
representation of each coordinates sequence and concatenate them
with the event type embedding as:

v𝑖 = Encoding𝑐 (𝑇𝑖)
e𝑖 = Embedding(𝑒𝑖 , E)
r𝑖 = concat(v𝑖 , e𝑖)

where Encoding𝑐 is the Coordinate-wise trajectory encoding. After
that, we employ the Transformer [30] as the trajectory encoder,
which has shown outstanding performance in modeling sequen-
tial data, such as nlp, video recognition etc. [20, 43]. As shown in
Figure 3, we employ a 𝐿-layer Transformer to generate the final
embedding of the touch trajectory. The input is the aggregation of
r𝑖 , which can be denoted as:

X = [r1; · · · ; r𝑀]

Few-shot Learning for Trajectory-based Mobile Game Cheating Detection KDD ’22, August 14–18, 2022, Washington, DC, USA

Figure 3: The model architecture of Hierarchical Trajec-
tory Encoder. The encoder contains two modules, where a
Coordinate-wise trajectory encoding module takes the co-
ordinates as input and studies the spatio-temporal informa-
tion for each event, while the Event-wise trajectory encoding
module fuses the events information and generates the touch
trajectory embedding.

Specifically, each layer is composed of two sub-layers, namely multi-
head self-attention mechanism and position-wise fully connected
feed-forward network. The multi-head self-attention mechanism is
adopted to study the spatio-temporal relationship between different
events, and the 𝑖𝑡ℎ self-attention can be denoted as follows:

Q𝑖 = H𝑖W𝑄

𝑖
,K𝑖 = H𝑖W𝐾

𝑖 ,V
𝑖 = H𝑖W𝑉

𝑖

A𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (Q
𝑖 (K𝑖)𝑇)√︁
𝑑𝑘

)V𝑖

where H is the input of each attention layer and H0 = X is the
input of the first attention layer. W𝑄

𝑖
,W𝐾

𝑖
,W𝑉

𝑖
are the learnable

parameters. Finally, the output t of the Transformer is the final
embedding of the whole events sequence.

Then we feed it to a classifier and optimize it with Cross-pattern
Meta Learner for few-shot cheating detection.

3.2 Cross-pattern Meta Learner
In reality, novel cheating types of mobile games are constantly
emerging, and it is impractical to obtain a large number of labeled
samples. Therefore, a few-shot cheating detection method is ur-
gently needed.

The few-shot cheating detection is rather challenging due to the
fact that the supervised information in the labeled dataset of novel
cheating patterns T𝑛𝑒𝑤 is insufficient to train a cheating detector.

We observe that cheating patterns of mobile games usually have
similar underlying common characters in touch trajectories, which
can be generalized for both seen and unseen cheating patterns.
Therefore, we introduce a meta-learning based optimization strat-
egy, namely Cross-pattern Meta Learner. The training procedure is
two folds, i.e., meta-training and fine-tuning.

Inspired by the MAML [8], we define the following meta tasks
for mobile game cheating detection. In meta-training, FCDGame
treats different cheating patterns as different meta tasks. For data
in T , we have 𝐾𝑝 meta tasks, and we randomly sample normal
samples to construct train data with cheating samples.

Specifically, we first divide the dataset of each cheating pattern
into support set and query set, i.e.,T𝑖 = T 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑖

⋃T𝑞𝑢𝑒𝑟𝑦
𝑖

. In each
training round, we sample 𝑘 touch trajectories for each cheating
pattern in T 𝑠𝑢𝑝𝑝𝑜𝑟𝑡

𝑖
and organize them as the training data for the

𝑖-th meta task.
We denote the parameters of FCDGame as 𝜃 = {𝜃𝐸 , 𝜃𝐶 }, where

𝜃𝐸 , 𝜃𝐶 represent the trajectory encoder’s and the classifier’s re-
spectively. As described in [8], the meta training contains two
sub-procedures, i.e., customized model update and meta learner
update. In the first one, the parameters 𝜃

′
𝑖
of 𝑖-th task are initialed

by 𝜃 , and then they are updated by the loss of the samples from
T 𝑠𝑢𝑝𝑝𝑜𝑟𝑡
𝑖

, which is expressed as:

𝜃
′
𝑖 = 𝜃 − 𝛼∇𝜃LT𝑠𝑢𝑝𝑝𝑜𝑟𝑡

𝑖

(𝑓 (𝜃))

In the meta learner update, the T𝑞𝑢𝑒𝑟𝑦
𝑖

is adopted to the customized
model with 𝜃

′
𝑖
to get the loss of each task which is used to update

the meta learner parameters 𝜃 :

𝜃 = 𝜃 − 𝛽∇𝜃
∑︁

𝑖∈[1,...𝐾𝑝]
𝐿T𝑞𝑢𝑒𝑟𝑦

𝑖
(𝑓 (𝜃))

With the above procedure, FCDGame will be optimized for several
sampling iterations until it converges.

Fine-tuning. In the fine-tuning procedure, we employ T𝑛𝑒𝑤
to optimize the model in meta-training to detect novel cheating
patterns. Then we evaluate the model on the dataset which has the
same cheating types asT𝑛𝑒𝑤 and denoted as E𝑛𝑒𝑤 = {E𝑛𝑒𝑤1 , ...E𝑛𝑒𝑤

𝐾𝑛
}.

To detect the samples of the 𝑖-th cheating pattern in E𝑛𝑒𝑤
𝑖

, we use
the samples in T𝑛𝑒𝑤

𝑖
as the fine-tuned data. Note that the parame-

ters of 𝜃𝐸 are shared in tasks while the parameters of the classifier
are trained from scratch. Owing to the training mechanism of meta
learner, FCDGame can fast adapt with few labeled samples.

Table 1: The statistics of the datasets.

Dataset Normal and Cheating Patterns
Normal T1 T2 T3 T𝑛𝑒𝑤1 T𝑛𝑒𝑤2

Battle 30000 1195 1912 1200 1650 1483
Rookie 30000 1356 1505 899 1306 942

4 EXPERIMENT
In this section, we detail the experiment setup and conduct exten-
sive experiments to demonstrate the effectiveness of our proposed
framework on two real game datasets, i.e., Battle and Rookie.

KDD ’22, August 14–18, 2022, Washington, DC, USA Yueyang Su et al.

Table 2: Performance comparison results of Precision, Recall and F1-score

Dataset Model 1-shot 5-shot 10-shot
precision recall F1-score precision recall F1-score precision recall F1-score

Battle

Rule-based method 0.3216 0.4524 0.3759 0.3753 0.4985 0.4282 0.3819 0.5960 0.4655
BiLSTM 0.5729 0.8539 0.6857 0.6758 0.8114 0.7374 0.71 0.7972 0.7511
ABLSTM 0.5194 0.5071 0.4980 0.7017 0.8833 0.78054 0.7286 0.8598 0.7852
H-LSTM 0.6073 0.5885 0.5825 0.7443 0.8950 0.8127 0.7746 0.9254 0.8426
MAML 0.5792 0.7940 0.6698 0.7304 0.9202 0.8144 0.8099 0.9002 0.8527

EncDec-AD 0.5593 0.7456 0.6392 0.3107 0.8054 0.4484 0.3887 0.8812 0.5395
FCDGame 0.6481 0.8913 0.7475 0.7471 0.9923 0.8493 0.85 0.9444 0.8947

Rookie

Rule-based method 0.2613 0.3269 0.2904 0.3958 0.4370 0.4154 0.4176 0.4620 0.4387
BiLSTM 0.3178 0.4556 0.3744 0.6012 0.715 0.6531 0.4133 0.7716 0.5384
ABLSTM 0.4042 0.5466 0.4647 0.601 0.6667 0.6321 0.4642 0.5728 0.7001
H-LSTM 0.4618 0.6776 0.5493 0.6509 0.8076 0.7208 0.7286 0.8598 0.7852
MAML 0.2407 0.6297 0.3483 0.6626 0.7667 0.7108 0.5899 0.8806 0.7066

EncDec-AD 0.2457 0.6313 0.3537 0.3922 0.72 0.5078 0.2002 0.8802 0.3262
FCDGame 0.6257 0.7963 0.6116 0.7007 0.9999 0.8694 0.82 0.9836 0.8944

Figure 4: The result of ablation study.

Table 3: Performance comparison with different number of
shots on Battle dataset.

of shot method precision recall F1-score

1-shot
MAML 0.5792 0.7940 0.6698
H-LSTM 0.6073 0.5885 0.5825
FCDGame 0.6481 0.8913 0.7475

2-shot
MAML 0.5464 0.8715 0.6717
H-LSTM 0.6856 0.7823 0.7223
FCDGame 0.7023 0.9355 0.7799

3-shot
MAML 0.7038 0.8357 0.7641
H-LSTM 0.7016 0.9182 0.7930
FCDGame 0.7291 0.9563 0.8187

4-shot
MAML 0.6952 0.8753 0.775
H-LSTM 0.7061 0.8608 0.7683
FCDGame 0.7307 0.9855 0.8332

5-shot
MAML 0.7304 0.9202 0.8144
H-LSTM 0.7443 0.8950 0.8127
FCDGame 0.7471 0.9923 0.8493

4.1 Experiment setup
We first introduce the datasets, evaluation metrics, compared base-
lines and implementation details of our experiments.

Dataset. As described in Section 2.1, we employ the trajectories
of two real mobile games to evaluate the performance of FCDGame.
We drop the trajectories with a length of less than 20. For each
dataset, we select 60% of cheating patterns as known and the re-
maining as novel patterns. The data labels are obtained from human
experts. The statistics of the datasets are shown in Table 1.

Evaluation metrics. We adopt the following metrics: Precision,
Recall and F1-score, to evaluate the model performance.

Baseline models. Due to the fact that there is no existing work on
few-shot mobile game cheating detection, we compared FCDGame
with five methods which are designed for PC game cheating detec-
tion and sequence modeling. The details of compared methods are
described as follows:

• Rule-based method [29]: The method focuses on the differ-
ences in occurrence frequencies of different angles in the
motion of robots and humans, using histograms to describe

Few-shot Learning for Trajectory-based Mobile Game Cheating Detection KDD ’22, August 14–18, 2022, Washington, DC, USA

the distribution of angles. Then the nearest centroid classifier
is used to identify cheating samples.
• BiLSTM [23]: BiLSTM is a general model which can effi-
ciently handle sequence data and captures the global and
local dependencies of sequences. We train the model with
known cheating samples while fine-tuning with few novel
cheating samples.
• MAML [8]: We employ BiLSTM as an encoder for the se-
quence data and update the parameters with the model-
agnostic meta-learning algorithm.
• ABLSTM [33]: This method focuses on players’ behavior
sequences and proposes a BiLSTM with attention for game
cheating detection. The model is trained with the same setup
as above BiLSTM.
• H-LSTM [35]: A hierarchical model to model sequential in-
formation, which can be easily adapted to model the touch
trajectories.
• EncDec-AD [18]: An encoder-decoder based model for anom-
aly detection in sequence data, optimized by minimizing the
reconstruction error. We trained the model with a large num-
ber of normal samples and then added an extra classifier
behind the encoder for cheating detection, which fine-tuned
with few novel cheating samples.

Figure 5: Sensitivity analysis of FCDGame w.r.t. different
number of classes in training on Battle dataset.

Implementation Details. We use 2-layers Bilstm as the backbone
of the Coordinate-wise trajectory encoding. Then a transformer is
introduced for event sequences encoding which consists of 2 layers
with 4 self-attention heads. Except for a special note, we set the
sample shot 𝑘 = 5 for meta tasks. For the learning rate, we empiri-
cally set 𝛼 = 0.001 and 𝛽 = 0.01. In addition, we have released the
code and data in https://github.com/super1225/cheating-detection.

4.2 Performance Comparison
We compare the performance of FCDGame with above-mentioned
baseline methods. The results are shown in Table 2. FCDGame con-
sistently achieves the best performance on the two datasets. Among
the baselines, H-LSTM shows better performance than ABLSTM,
especially on Rookie, with almost 9% improvements on F1-score in

1-shot setting, indicating that the hierarchical structure is suitable
for modeling touch trajectories. We also evaluate the performance
of FCDGame compared with two typical baselines(i.e., MAML and
H-LSTM) in different shot settings. The results on Battle are shown
in Table 3. Obviously, with the increase of fine-tuned samples, the
performances of baseline methods are improved steadily. However,
with the reduction of the labeled samples, their performances drop
sharply. For example, in 1-shot setting, the compared methods al-
most lost the detection ability, i.e., their precision is around 50%.
Conversely, despite the performance of FCDGame also decreasing,
it still achieves over 60% precision on both Rookie and Battle. We
attribute this to the Cross-pattern Meta Learner, which enables the
model to adapt to the novel cheating patterns quickly.

4.3 Ablation Study
We conducted an ablation study to analyze the effectiveness of the
proposed components in FCDGame. Two variants are proposed:
FCDGame-Meta and FCDGame-H. We first verify the role of the
Hierarchical Trajectory Encoder with FCDGame-Meta. In detail,
FCDGame-Meta replaces the Hierarchical Trajectory Encoder with
a BiLSTM-based model and is trained in the manner of Cross-
pattern Meta Learner. As shown in Figure 4, FCDGame achieves
a better performance than FCDGame-Meta, the F1-score is about
3% improvements on Battle and 16% on Rookie. These observations
indicate that the hierarchical architecture is effective in modeling
the touch trajectories, and our Hierarchical Trajectory Encoder has
a remarkable ability to extract the hierarchical relations between co-
ordinates and events. Also, it validates that the relation information
is informative in detecting mobile game cheating patterns.

Then we examine the effectiveness of the Cross-pattern Meta-
learner by comparing the performance gap between FCDGame and
FCDGame-H. FCDGame-H employs the Hierarchical Trajectory
Encoder for embedding and is directly optimized by stochastic
gradient descent. The results are shown in Figure 4. Owing to the
meta-learner, FCDGame significantly outperforms FCDGame-H on
all the metrics, e.g., F1-score, it achieves nearly 5% improvements
on the Battle dataset and 15% on the Rookie dataset. These results
show that our Cross-pattern Meta-learner can effectively improve
the performance of the model to detect novel cheating patterns with
few labeled samples from a parameter optimization perspective.

4.4 Sensitivity Analysis
To analyze the influence of choosing different numbers of cheating
patterns in meta-training, we provide different numbers of cheat-
ing classes in the meta-training stage to analyze the sensitivity of
FCDGame. We vary the number of cheating patterns from 1 to 5
and evaluate all combinations of the 5 patterns. Then we report the
average performance of the combinations on the Battle dataset in
Figure 5. With the increase of cheating patterns, FCDGame achieves
a significant performance improvement. The same observation can
also be found on the Rookie dataset. There is a significant increase
when the number of cheating classes changes to 3, and after that
the performance keeps stable. The reason for the results lies in
the biased learning of the model, i.e., models trained with several
patterns may focus on specific features that are not general for
other cheating patterns, which leads to ineffective learning or even

https://github.com/super1225/cheating-detection

KDD ’22, August 14–18, 2022, Washington, DC, USA Yueyang Su et al.

Figure 6: Visualization results of one-shot learning. In each sub-figure, points of different colors indicate different event types.

reverse learning for target cheating patterns. Despite the fact that
the biased learning severely damages the generalization and perfor-
mance of model, FCDGame still achieves good performance with
one cheating pattern available in training, which demonstrates
the advantages of FCDGame to learn general knowledge and the
stability in complex environments.

4.5 Case study
To illustrate the effectiveness of FCDGame, we visualize some re-
sults of 1-shot task in Figure 6. The trajectory 𝑇 on the left is the
sample available in the fine-tuning stage, while the trajectories
on the right are the samples classified as cheating by FCDGame.
We have the following observations: (1) The detected samples are
similar to the given fine-tuned samples. Moreover, the detected sam-
ples are diverse and visually different from the fine-tuned samples,
which verifies that FCDGame can capture the potential features
of the touch trajectory and the encoder is powerful to distinguish
different cheating patterns. (2) For the different cheating patterns(𝑇1
and 𝑇2), FCDGame can achieve good detection performance with
only one sample, demonstrating that our model can quickly adapt
to novel cheating pattern detection tasks with few samples for
fine-tuning.
5 RELATEDWORK
5.1 Game cheating detection
There is a continued interest in game cheating detection for many
years while most of them are proposed for PC games. The meth-
ods can be divided into two categories. The traditional approaches
[10, 26] are widely used in industries. For example, the anti-cheating
system [28] is built with dynamically maintainable blacklists of
cheating processes and identifies the clients with suspicious pro-
grams as cheating players. Kesteren[29] introduces a rule-based
method that focuses on the distribution of angles in the motion
of robots and humans. However, these traditional approaches are
mostly limited by the prior knowledge of experts and are poor in
the environment with cheats constantly emerging.

Nowadays, the machine learning-based [12, 21, 34] approaches
have received considerable critical attention. Some researchers [10,
15, 33] have tried to characterize players’ activities with pre-selected
handcrafted features. For example, Thawonmas [27] analyses the
operation sequences in log data and trains a support vector machine
with the specific input features such as action frequency, action type,
and time interval. Xu[33] proposes a sequence-level model which
focuses on players’ behavior sequences and introduces a BiLSTM-
based model. However, the performance is poor in the complex
sequences. Another trend of machine learning-based approaches is

applied with the hypothesis that game cheating would repeat the
similar action sequences [5, 7], so the users with high self-similarity
would be concerned as illegal users. Lee [16] proposes a detection
framework to measure the frequencies of users’ repeat activities
over time without the dependency on the specific game contents
and achieves good performance on the real-world dataset. Since
the evaluation of self-similarity requires a large number of action
sequences, the self-similarity based methods are limited in practice.

Considering the data privacy and generalization, we focus on the
touch trajectories which collected with the sensors under the screen.
Compared with the diverse data in PC games, the information in
these trajectories is rich but hidden.Moreover, the few-shot problem
caused by label scarcity of novel cheating patterns leads to the
under-learning of models, which disables most existing detection
approaches.

5.2 Trajectory modeling
In recent years, there has been an increasing interest in trajectory
modeling with the development of downstream tasks such as trajec-
tory forecasting [25, 39, 42], trajectory retrieval [11, 36, 38, 40], etc.
Some researchers [23, 37] introduce recurrent neural network(RNN)
and its variants(e.g., LSTM) to process the trajectories, which have
been proved effective for sequence data in nature language process-
ing [1]. For example, Xue[35] proposes a hierarchical LSTM-based
model for pedestrian trajectory prediction, which considers both
the influence of social neighborhood and scene layouts. Some re-
searchers [41] also adopt GNN to model the relationship of trajec-
tories. For example, Mo [19] proposes a GNN-RNN based encoder-
decoder network for interaction-aware trajectory prediction.

There are also some other literature on trajectory modeling.
However, most of them focus on the road networks while little
quantitative analysis of touch trajectories.

5.3 Few shot learning
Recently, few-shot learning has attracted extensive attention. The
methods can be divided into three categories [17, 31], including
data augmentation-based approaches, model-based approaches, and
algorithm-based approaches. Date augmentation-based approaches
[6, 22] apply prior knowledge to augment the supervised informa-
tion. For example, Schwartz [22] proposes a modified auto-encoder
to extract transferable deformations between pairs of training in-
stances at the same level and apply them to synthesize samples
of novel classes. The model-based approaches [17, 24] aim to con-
strain hypothesis space, and the main strategies include parameter
sharing and parameter bundling, which can be applied to share

Few-shot Learning for Trajectory-based Mobile Game Cheating Detection KDD ’22, August 14–18, 2022, Washington, DC, USA

general information between different tasks. The algorithm-based
approaches [2, 9] alter the search strategies for the optimal param-
eters with the guidance of prior knowledge. Finn [8] proposes a
model agnostic algorithm to study the optimal initialization param-
eters with two-layer optimized strategy.

Few-shot learning is a major area of interest within the field
of image classification, target detection, recommendation, etc. As
far as we know, the study of mobile game detection in a few-shot
setting has not been studied.

6 CONCLUSION
we have introduced a new problem of few-shot cheating detection
in mobile games and analyzed its challenges in data privacy and
label scarcity. To address these challenges, we aim to use the touch
trajectories which are passively collected by the game applications
as the data source and introduce a hierarchical architecture, namely
FCDGame. It can not only capture the nature of hierarchical trajec-
tories, but also extract common features from previously known
cheating patterns. FCDGame has three attractive characters, i.e.,
secure, low demand and general. Extensive experiments on two
real games demonstrate the superiority of FCDGame over existing
cheating detection methods.

ACKNOWLEDGMENTS
This work has been supported by the National Natural Science Foun-
dation of China under Grant No.: 62077044, 61702470, 62002343.

REFERENCES
[1] S. T. Arasteh. 2020. Generalized LSTM-based End-to-End Text-Independent

Speaker Verification. (2020).
[2] S. Azadi, M. Fisher, V. Kim, Z. Wang, E. Shechtman, and T. Darrell. 2017. Multi-

Content GAN for Few-Shot Font Style Transfer. (2017).
[3] D. Birant and A. Kut. 2007. ST-DBSCAN: An algorithm for clustering spa-

tial–temporal data. Data & Knowledge Engineering 60, 1 (2007), 208–221.
[4] Kuan-Ta Chen and Li-Wen Hong. 2007. User identification based on game-play

activity patterns. In NETGAMES 2007, Melbourne, Australia, 2007.
[5] Mark Crovella and Azer Bestavros. 1997. Self-similarity in World Wide Web

traffic: evidence and possible causes. IEEE/ACM Trans. Netw. 5, 6 (1997), 835–846.
[6] Ekin D. Cubuk, Barret Zoph, Dandelion Mané, Vijay Vasudevan, and Quoc V. Le.

2019. AutoAugment: Learning Augmentation Strategies From Data. In CVPR 2019,
Long Beach, CA, USA, June 16-20, 2019. Computer Vision Foundation / IEEE.

[7] Eun-Jo, Lee, Won-Jun, Jo, Hyunchul, Kim, Hyemin, Um, Jina, and Lee. 2016. A
Study on Game Bot Detection Using Self-Similarity in MMORPGs. Journal of the
Korea Institute of Information Security & Cryptology 26, 1 (2016), 93–107.

[8] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks. In Proceedings of the 34th Inter-
national Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017 (Proceedings of Machine Learning Research, Vol. 70), Doina Precup
and Yee Whye Teh (Eds.). PMLR, 1126–1135.

[9] Chelsea Finn, Kelvin Xu, and Sergey Levine. 2018. Probabilistic Model-Agnostic
Meta-Learning. In NeurIPS 2018, December 3-8, 2018, Montréal, Canada.

[10] Hiroshi Itsuki, Asuka Takeuchi, Atsushi Fujita, and Hitoshi Matsubara. 2010.
Exploiting MMORPG log data toward efficient RMT player detection. In ACE
2010, Taipei, Taiwan, November 17-19, 2010. ACM, 118–119.

[11] Quanliang Jing, Di Yao, Chang Gong, Xinxin Fan, Baoli Wang, Haining Tan, and
Jingping Bi. 2021. TrajCross: Trajecotry Cross-Modal Retrieval with Contrastive
Learning. In IEEEBigData. IEEE.

[12] Ah Reum Kang, Seong Hoon Jeong, Aziz Mohaisen, and Huy Kang Kim. 2016.
Multimodal Game Bot Detection using User Behavioral Characteristics. (2016).

[13] Ah Reum Kang, Huy Kang Kim, and Jiyoung Woo. 2012. Chatting Pattern Based
Game BOT Detection: Do They Talk Like Us? KSII Trans. Internet Inf. Syst. (2012).

[14] Frauke Kreuter, Georg Christoph Haas, Florian Keusch, Sebastian Bähr, and Mark
Trappmann. 2018. Collecting Survey and Smartphone Sensor Data With an App:
Opportunities and Challenges Around Privacy and Informed Consent. Social
Science Computer Review (2018).

[15] Hyukmin Kwon and Huy Kang Kim. 2011. Self-similarity based Bot Detection
System in MMORPG. In The 3rd International Conference on Internet.

[16] Eunjo Lee, Jiyoung Woo, Hyoungshick Kim, Aziz Mohaisen, and Huy Kang
Kim. 2016. You are a Game Bot!: Uncovering Game Bots in MMORPGs via Self-
similarity in the Wild. In NDSS 2016, San Diego, California, USA, February 21-24,
2016. The Internet Society.

[17] Jiang Lu, Pinghua Gong, Jieping Ye, and Changshui Zhang. 2020. Learning from
Very Few Samples: A Survey. CoRR abs/2009.02653 (2020). arXiv:2009.02653

[18] Pankaj Malhotra, Anusha Ramakrishnan, Gaurangi Anand, Lovekesh Vig, Puneet
Agarwal, and Gautam Shroff. 2016. LSTM-based Encoder-Decoder for Multi-
sensor Anomaly Detection. CoRR abs/1607.00148 (2016). arXiv:1607.00148

[19] X. Mo, Y. Xing, and C. Lv. 2021. Graph and Recurrent Neural Network-based
Vehicle Trajectory Prediction For Highway Driving. (2021).

[20] D. Neimark, O. Bar, M. Zohar, and D. Asselmann. 2021. Video Transformer
Network. (2021).

[21] Kusno Prasetya and Zheng Da Wu. 2010. Artificial Neural Network for bot
detection system in MMOGs. In NetGames 2010, Taipei, Taiwan, 16-17 November,
2010. IEEE.

[22] Eli Schwartz, Leonid Karlinsky, Joseph Shtok, Sivan Harary, Mattias Marder,
Abhishek Kumar, Rogério Schmidt Feris, Raja Giryes, and Alexander M. Bronstein.
2018. Delta-encoder: an effective sample synthesis method for few-shot object
recognition.

[23] Sima Siami-Namini, Neda Tavakoli, and Akbar Siami Namin. 2019. The Perfor-
mance of LSTM and BiLSTM in Forecasting Time Series. In 2019 IEEE International
Conference on Big Data (Big Data). 3285–3292.

[24] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M
Hospedales. 2018. Learning to compare: Relation network for few-shot learning.
In CVPR’18. 1199–1208.

[25] Haining Tan, Di Yao, Tao Huang, Baoli Wang, Quanliang Jing, and Jingping Bi.
2021. Meta-Learning Enhanced Neural ODE for Citywide Next POI Recommen-
dation. In MDM. IEEE.

[26] Ruck Thawonmas and Yoshitaka Kashifuji. 2010. Detection of MMORPG Mis-
conducts Based on Action Frequencies, Types and Time-Intervals. In DMIN 2010,
July 12-15, 2010, Las Vegas, Nevada, USA.

[27] R. Thawonmas and Y. Kashifuji. 2010. Detection of MMORPG Misconducts Based
on Action Frequencies, Types and Time-Intervals. In DMIN 2010, July 12-15, 2010,
Las Vegas, Nevada, USA.

[28] Yuan Tian, Eric Chen, Xiaojun Ma, Shuo Chen, and Patrick Tague. 2016. Swords
and Shields - A Study of Mobile Game Hacks and Existing Defenses. In Conference
on Computer Security Applications.

[29] Marlieke van Kesteren, Jurriaan Langevoort, and Franc Grootjen. 2009. A step
in the right direction: Botdetection in MMORPGs using movement analysis. In
BNAIC 2009. 129–136.

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. arXiv (2017).

[31] YaqingWang, Quanming Yao, James T. Kwok, and LionelM. Ni. 2020. Generalizing
from a Few Examples: A Survey on Few-shot Learning. ACMComput. Surv. (2020).

[32] C Xca, C Jxa, Z. B. Rui, C. A. Wei, A Jf, and B Cl. 2021. TrajVAE: A Variational
AutoEncoder model for trajectory generation. (2021).

[33] Jiarong Xu, Yifan Luo, Jianrong Tao, Changjie Fan, Zhou Zhao, and Jiangang Lu.
2020. NGUARD+: An Attention-based Game Bot Detection Framework via Player
Behavior Sequences. ACM Trans. Knowl. Discov. Data 14, 6 (2020), 65:1–65:24.

[34] Yongjun Xu, Xin Liu, and Xin Cao.etc. 2021. Artificial intelligence: A powerful
paradigm for scientific research. The Innovation 2, 4 (2021), 100179. https:
//www.sciencedirect.com/science/article/pii/S2666675821001041

[35] Hao Xue, Du Q Huynh, and Mark Reynolds. 2018. SS-LSTM: A hierarchical LSTM
model for pedestrian trajectory prediction. In 2018 WACV. IEEE, 1186–1194.

[36] Di Yao, Gao Cong, Chao Zhang, and Jingping Bi. 2019. Computing Trajectory Sim-
ilarity in Linear Time: A Generic Seed-Guided Neural Metric Learning Approach.
In ICDE. IEEE.

[37] Di Yao, Gao Cong, Chao Zhang, and Jingping Bi. 2019. Computing Trajectory Sim-
ilarity in Linear Time: A Generic Seed-Guided Neural Metric Learning Approach.
In 2019 IEEE 35th International Conference on Data Engineering (ICDE).

[38] Di Yao, Gao Cong, Chao Zhang, Xuying Meng, Rongchang Duan, and Jingping
Bi. 2020. A Linear Time Approach to Computing Time Series Similarity based
on Deep Metric Learning. IEEE Transactions on Knowledge and Data Engineering
(2020).

[39] Di Yao, Chao Zhang, Jian-Hui Huang, and Jingping Bi. 2017. SERM: A Recurrent
Model for Next Location Prediction in Semantic Trajectories. In CIKM.

[40] Di Yao, Chao Zhang, Zhihua Zhu, Qin Hu, Zheng Wang, Jian-Hui Huang, and
Jingping Bi. 2018. Learning deep representation for trajectory clustering. Expert
Syst. J. Knowl. Eng. (2018).

[41] H. Yao, X. Tang, W. Hua, G. Zheng, and Z. Li. 2018. Modeling Spatial-Temporal
Dynamics for Traffic Prediction. (2018).

[42] Chongjian Yue, Lun Du, Qiang Fu, Wendong Bi, Hengyu Liu, Yu Gu, and Di
Yao. 2022. HTGN-BTW: Heterogeneous Temporal Graph Network with Bi-Time-
Window Training Strategy for Temporal Link Prediction. arXiv (2022).

[43] J. Zhang, H. Luan, M. Sun, F. F. Zhai, J. Xu, M. Zhang, and Y. Liu. 2018. Improving
the Transformer Translation Model with Document-Level Context. (2018).

https://arxiv.org/abs/2009.02653
https://arxiv.org/abs/1607.00148
https://www.sciencedirect.com/science/article/pii/S2666675821001041
https://www.sciencedirect.com/science/article/pii/S2666675821001041

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Data description
	2.2 Problem Definition

	3 Methodology
	3.1 Hierarchical Trajectory Encoder
	3.2 Cross-pattern Meta Learner

	4 EXPERIMENT
	4.1 Experiment setup
	4.2 Performance Comparison
	4.3 Ablation Study
	4.4 Sensitivity Analysis
	4.5 Case study

	5 Related work
	5.1 Game cheating detection
	5.2 Trajectory modeling
	5.3 Few shot learning

	6 CONCLUSION
	Acknowledgments
	References

