
Received: 15 March 2017 Revised: 5 July 2017 Accepted: 8 September 2017

DOI: 10.1111/exsy.12252

S P E C I A L I S S U E P A P E R

Learning deep representation for trajectory clustering

Di Yao1,5 Chao Zhang2 Zhihua Zhu1,5 Qin Hu3 Zheng Wang4

Jianhui Huang1,5 Jingping Bi1,5

1Institute of Computing Technology, Chinese

Academy of Sciences, Beijing, China
2Department of Computer Science, University

of Illinois at Urbana-Champaign, Urbana, IL,

USA
3College of Information Science and

Technology, Beijing Normal University, Beijing,

China
4School of Information Technologies,

University of Sydney, Sydney, Australia
5University of Chinese Academy of Sciences,

Beijing, China

Correspondence

Jingping Bi, Institute of Computing Technology,

Chinese Academy of Sciences, Beijing, China.

Email: bjp@ict.ac.cn

Funding information

National Natural Science Foundation of China

(NSFC), Grant/Award Number: 61472403 and

61303243;

Abstract

Trajectory clustering, which aims at discovering groups of similar trajectories, has long been con-

sidered as a corner stone task for revealing movement patterns as well as facilitating higher level

applications such as location prediction and activity recognition. Although a plethora of trajectory

clustering techniques have been proposed, they often rely on spatio-temporal similarity measures

that are not space and time invariant. As a result, they cannot detect trajectory clusters where the

within-cluster similarity occurs in different regions and time periods. In this paper, we revisit the

trajectory clustering problem by learning quality low-dimensional representations of the trajec-

tories. We first use a sliding window to extract a set of moving behaviour features that capture

space- and time-invariant characteristics of the trajectories. With the feature extraction module,

we transform each trajectory into a feature sequence to describe object movements and further

employ a sequence-to-sequence auto-encoder to learn fixed-length deep representations. The

learnt representations robustly encode the movement characteristics of the objects and thus lead

to space- and time-invariant clusters. We evaluate the proposed method on both synthetic and

real data and observe significant performance improvements over existing methods.
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1 INTRODUCTION

Owing to the rapid growth of Global Positioning System (GPS)-equipped devices and location-based services, enormous amounts of spatial trajec-

tory data are being collected in different scenarios. Among various trajectory analysis tasks, trajectory clustering—which aims at discovering groups

of similar trajectories—has been recognized as one of the most important. Discovering trajectory clusters can not only reveal the latent character-

istics of the moving objects but also support a wide spectrum of high-level applications, such as travel intention inference, mobility pattern mining

(Q. Yuan et al., 2017; Zhang, Han, Shou, & Lu, 2014), location prediction, and anomaly detection (Zheng, 2015).

A plethora of trajectory clustering techniques have been proposed (G. Yuan, Sun, Zhao, Li, & Wang, 2017). They typically use certain measures to

quantify trajectory similarities and then apply some classic clustering algorithms (e.g., K-means, Density-Based Spatial Clustering of Applications

with Noise (DBSCAN), and spectral clustering) to detect clusters. And popular trajectory similarity measures (Besse, Guillouet, Loubes, & Royer,

2016) include dynamic time warping (DTW), edit distance on real sequence (EDR), and longest common subsequences (LCSS). Although these mea-

sures can group trajectories that are similar to each other in a particular geographical region and time period, many practical applications work with

trajectories that distribute in different regions with different time spans and sampling rates. In such applications, one is often required to identify

clusters, each of which represents similarity of trajectories regardless of the differences in time and space. For example, the taxis in traffic jams can

have similar moving behaviours, but the traffic jams usually occur in different areas in the city with different durations. Such spatio-temporal shifts

(Hung, Peng, & Lee, 2015) are common in many scenarios and render current trajectory clustering algorithms ineffective.

In this work, we revisit the trajectory clustering problem and develop a method to detect space- and time-invariant trajectory clusters. Our

method is inspired by the recent success of recurrent neural networks (RNNs) for handling sequential data in speech recognition and natural lan-

guage processing. Given the input trajectories, our goal is to convert each trajectory into a fixed-length representation that is able to well encode
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the object's moving behaviours. Once the high-quality trajectory representations are learnt, any classic clustering algorithms can be easily applied

based on practical needs.

Nevertheless, it is non-trivial to directly apply RNNs to the input trajectories to obtain representations of high qualities because of the varying

qualities and sampling frequencies of the given trajectories. Furthermore, we find that a naive strategy that considers each trajectory as a sequence

of three-dimensional records (time, latitude, and longitude) leads to dramatically oscillating parameters and nonconvergence in the optimization

process of RNNs.

In light of the above issue, we first extract a set of movement features for each trajectory. Our feature extraction module is based on a fixed-length

sliding window, which scans through the input trajectory and extracts its space- and time-invariant features of the trajectories. With extracted

features, we convert each trajectory into a feature sequence to describe the movements of the object and employ a sequence-to-sequence

auto-encoder to learn fixed-length deep representations of the objects. The learnt low-dimensional representations robustly encode different

movement characteristics of the objects and thus contribute to high-quality clusters.

In summary, we make the following contributions:

• We study the problem of detecting space- and time-invariant trajectory clusters. Such a task differs from previous works in that it involves

grouping trajectories collected in different regions with varying lengths and sampling rates.

• We employ a sliding-window-based approach to extract a set of robust movement features and then apply sequence-to-sequence auto-encoders

to learn fixed-length representations for the trajectories. To the best of our knowledge, this is the first study that leverages RNNs for the moving

behaviour analysis and trajectory clustering task on GPS data.

• We evaluate our method on both synthetic and real-life data. We find that our method can generate high-quality clusters on both data sets and

largely outperforms existing methods quantitatively.

The rest of this paper is organized as follows. In Section 2, we investigate some related work. We offer the problem formulation and the method

overview in Section 3. And then, we detail the main steps of the methods in Section 4. We empirically evaluate the proposed method in Section 5

and finally conclude in Section 6.

2 RELATED WORKS

In this section, we briefly review the existing methods for trajectory clustering, trajectory pattern mining, and sequence-to-sequence auto-encoder.

2.1 Trajectory clustering

Classic trajectory clustering approaches (G. Yuan et al., 2017) always utilize distance-based or density-based clustering algorithms based on simi-

larity measures for trajectory data (L. Chen, Özsu, & Oria, 2005), such as DTW, EDR, and LCSS. Lee, Han, and Whang (2007) proposed a framework

that first partitioned each trajectory into several subtrajectories and then grouped them using density-based clustering method. Tang, Pi, and He

(2016) presented a travel behaviour clustering algorithm, combining sampling with density-based clustering to deal with the noise in trajectory data.

In Li, Lee, Li, and Han (2010), the author put forward an incremental framework to support online incremental clustering. And Besse et al. (2016)

performed distance-based trajectory clustering by introducing a new distance measurement. Kohonen (1998) and Sas, O'Hare, and Reilly (2005)

developed self-organizing maps (SOM) and learning vector quantization for adaptive trajectory analysis and clustering. Moreover, trajectory clus-

tering can be used for gesture recognition (Alahi, Vignesh Ramanathan, Robicquet, Li, & Savarese, 2016; Keskin, Cemgil, & Akarun, 2011). Although

the aforementioned methods can only cluster trajectories that are similar in a fixed region and period, they are inapplicable for discovering space-

and time-invariant clusters.

2.2 Trajectory pattern mining

A number of methods have been proposed for mining different patterns in trajectories. Hung et al. (2015) proposed a trajectory pattern mining

framework that extracted frequent travel patterns and trajectory routes. Zhang et al. (2014) developed an efficient and robust method for extracting

frequent sequential patterns from semantic trajectories. Higgs and Abbas (2015) presented a framework for the segmentation and clustering of

car-following trajectories based on state-action variables. Zhang et al. (2016) used the Hidden Markov Model to formulate the mobility for different

groups of users. S. Liu, Ni, and Krishnan (2014) introduced a speed-based clustering method to detect taxi-charging fraud behaviour. Different from

the above research on specific moving patterns in trajectory data, we plan to detect general clusters.

2.3 Sequence-to-sequence auto-encoder

Sequence-to-sequence auto-encoder was first proposed by Sutskever, Vinyals, and Le (2014) for machine translation. Dai and Le (2015) introduced

a sequence-to-sequence auto-encoder and used it as a "pretraining" algorithm for a later supervised sequence learning. Recent research has also



YAO ET AL. 3 of 16

demonstrated the effectiveness of sequence-to-sequence auto-encoders for generating fixed-length representations for videos and sentences.

Specifically, Chung, Wu, Shen, and Lee (2016) employed it to generate audio vector; Srivastava, Mansimov, and Salakhutdinov (2015) used multilayer

long short term memory (LSTM) networks to learn representations of video sequences; Palangi et al. (2016) generated a deep sentence embedding

for information retrieval. However, we are not aware of any previous works that apply auto-encoders to GPS trajectory data. In addition, as afore-

mentioned, directly applying auto-encoders on trajectory data is non-trivial because of the varying sampling frequencies and the noise between

continuous records.

3 PROBLEM FORMULATION AND GENERAL FRAMEWORK

In this section, we first formulate our problem, and then we give an overview of our framework.

3.1 Problem formulation

Given a set of moving objects O = {o1, o2, … , oL}, each object oi has a history sequence of GPS records So = (x1, x2, … , xM). Here, each element x is

consisted of a tuple (tx, lx, ax, ox), where tx is the timestamp, lx is a two-dimensional vector (longitude and latitude) representing the object's location,

ax is a set of attributes collected by other sensors (e.g., if the object is a car, ax may include the speed, turning rate, and fuel consumption); and ox is

the object ID.

Considering that a raw sequence So can be sparse in practice, we segment it into a set of trajectory sequences TRo = (TR1, TR2, … , TRn) that is

defined as follows:

Definition. Given So = (x1, x2, … , xM) and a time interval threshold Δt > 0, a subsequence ST
o = (xi, xi+1, … , xi+k) is a trajectory if ST

o satisfies:

(a) ∀ 1 < j ≤ k, txj
− txj−1

≤ Δt; and (b) there is no subsequence in So that contain ST
o and also satisfy condition (a).

Figure 1 depicts a simple example of the trajectory generation process. With So = (x1, x2, x3, x4, x5, x6, x7) andΔt = 3 hr, we segment the sequence

into three trajectories: TRo = (TR1, TR2, TR3).

FIGURE 1 Partition the sparse sequence into trajectories

FIGURE 2 Our framework for trajectory clustering. GPS = Global Positioning System
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Combining the trajectories of all the objects, we can obtain a trajectory set 𝒯 = {TR1, TR2, … , TRN}. Our goal is to generate space- and

time-invariant trajectory clusters of 𝒯 . Specifically, based on the objects' movement patterns, we need to generate a set of clusters 𝒪 =
{C1,C2, … ,CK}. In each cluster, the similarity shared by the member trajectories may appear in different geographical regions and also different

parts of the trajectories.

3.2 Overview of the framework

We present the framework for finding space- and time-invariant trajectory clusters in Figure 2. Generally, the framework is an unsupervised

approach with four layers:

• Trajectory preprocessing layer: The input of this layer is the GPS record sequences of the moving objects. Note that the sequence is noisy and the

temporal intervals between some record pairs can be very large. In this layer, we remove the low-quality GPS records and cut the sequences into

trajectories with temporal continuity (detailed in Section 3.1).

• Moving behaviour feature extraction layer: In this layer, all the trajectories are processed with a moving behaviour feature extraction algorithm.

Based on a sliding window, we transform each trajectory into a feature sequence.

• Seq2Seq auto-encoder layer: We use a sequence-to-sequence auto-encoder to embed each feature sequence to a fixed-length vector that

encodes the movement pattern of the trajectory.

• Cluster analysis layer: Finally, we choose a classic clustering algorithm based on the practical needs and group the learnt representations

into clusters.

4 METHODOLOGY

In this section, we elaborate two main layers in our framework: the feature extraction layer and the sequence-to-sequence auto-encoder layer.

Additionally, we offer an overview of typical recurrent units that is used in our method.

4.1 Moving behaviour feature extraction

The basic idea of the behaviour feature extraction is to utilize a sliding window to traverse the records and obtain features in each window. As shown

in Figure 3, with the help of sliding window, we aim to acquire space- and time-invariant features to describe the moving behaviours of the object.

Let Lp and offsetp denote the width and the offset of the sliding window, respectively. Note that classic methods often set offsetp = Lp, but we find

that a finer granularity of offsetp = 1∕2 × Lp can lead to better performance. In this way, each record in a trajectory is assigned into two consecutive

windows, and most behaviour changes can be captured. Because the record density is non-uniform, some dummy windows with no records are also

introduced, such as W6 in Figure 4.

FIGURE 3 Moving behaviour extraction

FIGURE 4 Sliding time windows generation
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FIGURE 5 Attributes completely

FIGURE 6 The generation of moving behaviour sequence

Now, we describe the detailed feature extraction process in each sliding window as follows. The moving behaviour changes can be reflected

by the differences of the attributes between two consecutive records. Suppose a window contains R records, denoted as W = (x1, x2, … , xR),

and the attributes in each record consist of speed and rate of turn (ROT). Then the extracted attributes of the moving behaviours include time

interval Δti = txi
− txi−1

, change of position Δli = lxi
− lxi−1

, change of speed Δsi = sxi
− sxi−1

, and change of ROT Δri = rxi
− rxi−1

, where i ranges

from 2 to R. In this way, a window with R records has R − 1 moving behaviour attributes (Δl,Δs,Δr).

Even though the speed and ROT are not included as explicit attributes in the raw record, they can be calculated according to the location

information. As shown in Figure 5, consider a trajectory with T records TR = (x1, x2 … xT). Each of them only has the timestamp and loca-

tion coordinates, denoted as (t, lat, lon). For the first record x1, we set sx1
= 0 and rx1

= 0. Then we can calculate the speed and ROT of each

record by

sxi
=

√
(latxi

− latxi−1
)2 + (lonxi

− lonxi−1
)2

txi
− txi−1

, (1)

and

rxi
= arctan

lonxi
− lonxi−1

latxi
− latxi−1

, (2)

where i = 2, · · · , T . After this procedure, the speed and ROT can be derived for each trajectory.

If R ≥ 1, for each i from 1 to R, we compute Δti, Δli, Δsi, and Δri. We further compute the change rate of these features fi = (fΔli
, fΔsi

, fΔri
),

where fΔli
= Δli∕Δti, fΔsi

= Δsi and fΔri
= Δri. For two consecutive records, fΔli

denotes the average speed, fΔsi
stands for the change of speeds,

and fΔri
represents the change of ROTs. After computing these features in each pair, we get a feature set f = {f1, f2, … , fR}. Next, we use the

statistics of f to generate the features in the sliding window. Here, six statistics{mean,max,75%quantile,50%quantile,25%quantile,min}are selected.

In summary, the moving behaviour features of each window b has 3 × 6 = 18 dimensions, consisted of

{fΔl, fΔs, fΔr} × {mean,max,75%quantile,50%quantile,25%quantile,min}

If R = 0, we skip this window. Figure 6 and Algorithm 1 show the generation procedure of moving behaviour feature sequence.

For each trajectory in 𝒯 , we first generate the moving behaviour sequence. Then, we put these sequences in a set and denote it as BS =

{BTR1
,BTR2

, … ,BTRN
}. Finally, we normalize each feature to prepare for the next sequence-to-sequence auto-encoder layer.
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4.2 LSTM and GRU recurrent neural networks

RNNs are apt at modelling input sequences with variable lengths, the recurrent units of which form a directed cycle. For an input sequence X =
(x1, x2, … , xT), where i ∈ [1,N], RNNs update its hidden state ht according to the current input xt and the previous hidden state ht−1. The hidden

state ht acts as an internal memory at time t that captures dynamic temporal information in the sequence. In specific, the hidden state is updated as

ht = f(ht−1, xt), (3)

where f(·) is the activation function. Note that function f(·) is used to compute a weighted sum of inputs and apply a nonlinear transformation, which

depends on the type of recurrent units .

As the vanilla RNN has difficulty in learning long-term dependencies in practice (Bengio, Simard, & Frasconi, 1994), we employ both LSTM and

gated recurrent unit (GRU; Cho, van Merrienboer, Bahdanau, & Bengio, 2014) to overcome this shortage. We briefly describe the updating schemes

in LSTM and GRU below.

4.2.1 LSTM unit

Given an input sequence X = (x1, x2, … , xT), LSTM computes the hidden vector sequence H = (h1, h2, … , hT) by maintaining a memory of ht−1 at

time t and deciding whether to keep the existing memory,

ft = 𝜎(Wf · [ht−1, xt] + bf), (4)

it = 𝜎(Wi · [ht−1, xt] + bi), (5)

ot = 𝜎(Wo · [ht−1, xt] + bo), (6)

c̃t = tanh(Wc̃ · [ht−1, xt] + bc̃), (7)

ct = ft · ct−1 + it · c̃t, and (8)

ht = ot · tanh(ct), (9)

where 𝜎(·) is the sigmoid function; ct is the memory content of the unit; and c̃t stands for the new memory content. There are three gates in LSTM:

the input gate it, the forget gate ft, and the output gate ot. Note that it modulates the extent to which the new memory should be stored; the forget
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gate ft modulates the degree to which the existing memory should be forgotten; and ot modulates the amount of memory content for exposure. In

the above, the memory content ct at time t is updated by Equation 8. After that, the hidden state ht is updated according to Equation 9. Intuitively,

LSTM detects the important part of input and stores it for a long time. Hence, it is suitable for learning long-term dependence that has been proved

successful in a number of applications (Q. Chen, Song, Yamada, & Shibasaki, 2016; Chung et al., 2016; Dai & Le, 2016; Srivastava et al., 2015; Sutskever

et al., 2014).

4.2.2 GRU unit

GRU is widely adopted in encoder- and decoder-based machine translation (Cho et al., 2014). It allows each recurrent unit to adaptively capture the

dependencies of different time scales. Different from LSTM, GRU controls the flow of information inside the unit without a separate memory cell.

More formally

zt = 𝜎(Wz · [ht−1, xt]), (10)

rt = 𝜎(Wr · [ht−1, xt]), (11)

h̃t = tanh(Wh̃ · [rt · ht−1, xt]), and (12)

ht = (1 − zt)ht−1 + zth̃t. (13)

GRU has only two gates: the update gate zt and the reset gate rt. The hidden state ht is a linear interpolation of ht−1 and h̃t . As the combination of

input gate and forget gate in LSTM, the update gate zt modulates how much the unit stores or forgets new information. In this way, GRU merges the

memory content c into the hidden state and achieves a simpler architect design.

4.3 Seq2Seq auto-encoder

In this section, we describe a model utilizing sequence-to-sequence auto-encoder to reconstruct the moving behaviour sequence and generating a

fixed-length deep representation of the trajectory (Bengio, Courville, & Vincent, 2013).

The sequence-to-sequence auto-encoder model is composed of two RNNs—The encoder RNN shown in the left part of Figure 7, and the decoder

RNN is illustrated in the right side. The input of the model is a behaviour sequence BTRi
= (b1, b2, … , bT). The encoder RNN reads the input sequence

sequentially and update hidden state ht accordingly. The encoder RNN is updated by

ht = f(ht−1, bt). (14)

After the last bT is processed, the hidden state hT is used as the representation for the whole sequence. Then, the decoder first generates the output

c1 by taking hT as the initialized hidden state of the decoder RNN and further generate (c2, c3, … , cT). The decoder RNN is updated by

hd
t = f(hd

t−1, ct−1, hT). (15)

The target of the decoder is to reconstruct the input sequence BTRi
= (b1, b2, … , bT). In other words, the encoder RNN and decoder RNN are trained

together by minimizing the reconstruction error, measured by the general mean squared error:

MSE =
∑T

t=1
||bt − ct||2

. (16)

FIGURE 7 Architecture of sequence-to-sequence auto-encoder
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As the input sequence is taken as the learning target, the training process does not need any labelled data. The fixed-length moving behaviour

vector z is a meaningful representation for the input behaviour sequence BTRi
, because the hole input sequence can be reconstructed from z by

the decoder.

After this procedure, we get the moving behaviour vector set Z = {zTR1
, zTR2

, … , zTRN}. Then, we feed them in a classic clustering algorithm, such

as K-means, and obtain the clusters.

5 EXPERIMENT

In this section, we empirically evaluate our method. We first introduce the data sets of the experiments and describe the compared methods. Then,

we present the experimental results.

5.1 Data set and compared methods

5.1.1 Data set and settings

We use both synthetic and real data sets to test the effectiveness of the framework. For the synthetic data set, we simulated 9,000 trajectories

including nine kinds of movement patterns that consist of three kinds of basic movement patterns {Straight,Circling,Bending} and six kinds of com-

bination patterns {Straight + Circling, Straight + Bending,Circling + Bending,Circling + Straight,Bending + Straight,Bending + Circling}. Each pattern

FIGURE 8 Part of the synthetic basic movement patterns that consist of 10 straight trajectories, 10 circle trajectories, and 10 bending trajectories

FIGURE 9 Part of the synthetic combine movement patterns. Each combine pattern has five trajectories. Str = Straight; Cir = Circling;
Ben = Bending
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has 1,000 trajectories. The sampling frequency and time length of each trajectory were generated randomly from 2,500 to 5,000 s. After generat-

ing the trajectories, we computed the attributes of location with Equations 1 and 2. In addition, we added Gaussian noise in the location generation

process. Part of the synthetic data set is shown in Figures 8 and 9.

The real data set corresponds to 200 vessels in China, containing 50 cargo ships, 50 fishing ships, 50 oil ships, and 50 passenger ships. The vessel

motion data are collected by Automatic Identification System (AIS). AIS (Harati-Mokhtari, Wall, Brooks, & Wang, 2007) that is one of the most

important ways for maritime domain awareness. AIS messages can be divided into dynamic messages and static messages. Dynamic messages report

the dynamic situation of the vessel, including the time, position (longitude and latitude), course over ground, speed over ground, and heading. Static

messages include type, name, and size. The recording time is from May 2016 to June 2016. There are totally 5,924,142 records in the data set. After

trajectory partition, we generated 4,700 trajectories.

5.1.2 Compared methods

For the parameter setting, both LSTM and GRU have three major parameters: (a) the learning rate 𝛼 that controls the parameter updating step size;

(b) the size of the hidden state m, which controls the trajectory embedding size; and (c) the number of training epochs n. Allowing for the influence of

FIGURE 10 Long short term memory (LSTM) log(MSE) changes with different parameters
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FIGURE 11 Gated recurrent unit (GRU) log(MSE) changes with different parameters

different parameters, we set the default values of the parameters as follows: (a) 𝛼 = 0.00001, m = 250, and n = 400 for LSTM; and (b) 𝛼 = 0.00001,

m = 100, and n = 800 for GRU. For the behaviour extraction layer, we set the sliding window as 600 s and the offset of the window as 300 s.

We implemented the framework with Python and TensorFlow. All the experiments were performed on a server with Intel Xeon CPU 2.10 GHz.

The data and code are publicly available.1

We compare our method, including LSTM and GRU, with four trajectory clustering methods based on different measures, including LCSS, DTW,

EDR, and Hausdorff distance. All the distance functions can handle trajectories with different lengths. LCSS, DTW, and EDR are warping-based

distance functions (Besse et al., 2016) that aim to solve the time-shifting problem. They are able to match locations from different trajectories with

different indexes. In contrast, Hausdorff distance is shape-based distance. For each measure, we choose K-Medoids as the clustering algorithm. For

the synthetic data, because the number of moving behaviour patterns are known, we set the number of clusters as 9. Whereas for the real-life data,

we tune the number of clusters and analyse the corresponding results to choose the best.

We measure the cluster results in precision, recall, and accuracy (Y. Liu, Li, Xiong, Gao, & Wu, 2010). For each method, we first compute the best

match between the clustering results and the ground-truth movement patterns. Then, for each movement pattern, we measure the precision and

recall. The precision p and recall r are computed as

1 https://github.com/yaodi833/trajectory2vec.git
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p = TP
TP + FP

, r = TP
TP + FN

. (17)

Here, true positive (TP) stands for the number of trajectories that match the movement pattern. Finally, we measure the accuracy of each method,

computed as follows: Accuracy = Sum of All TPs / Number of Trajectories.

5.2 Parameters analysis

We now study the effects of different parameters: the learning rate 𝛼, the hidden state size m, and the number of training epochs n. We

tune the parameters as follows: 𝛼 = [0.00001,0.00005,0.0001,0.0005], m = [50,100,150,200,250,300], and n = 1,000. When study-

ing the effect of one parameter, we fix the other parameters to their default values. For different settings, we measure the training error

FIGURE 12 Time-consuming changes with different parameters. LTSM = long short term memory; GRU = gated recurrent unit

TABLE 1 Clustering performance on synthetic data

EDR LCSS DTW Hausdorff GRU-s2s LSTM-s2s

Straight 0.465/0.563 0.460/0.411 0.411/0.613 0.423/0.263 0.643/0.723 0.760/0.703

Circling 0.550/0.482 0.610/0.643 0.540/0.462 0.415/0.531 0.768/0.756 0.766/0.823

Bending 0.668/0.678 0.621/0.392 0.472/0.322 0.465/0.379 0.733/0.546 0.652/0.752

Straight+Circling 0.359/0.468 0.573/0.523 0.503/0.474 0.507/0.414 0.571/0.684 0.596/0.410

Straight+Bending 0.453/0.427 0.462/0.574 0.507/0.746 0.435/0.510 0.646/0.823 0.783/0.763

Circling+Bending 0.600/0.581 0.469/0.313 0.766/0.480 0.389/0.283 0.563/0.522 0.738/0.685

Circling+Straight 0.470/0.434 0.388/0.661 0.595/0.377 0.348/0.429 0.664/0.312 0.621/0.891

Bending+Straight 0.327/0.374 0.409/0.582 0.769/0.379 0.375/0.534 0.609/0.927 0.500/0.316

Bending+Circling 0.674/0.419 0.528/0.251 0.525/0.879 0.442/0.387 0.715/0.539 0.688/0.819

Overall accuracy (%) 49.18 48.33 53.69 41.64 64.80 68.47

Note. This table shows the cluster result of synthetic data set. The two numbers in each cell stand for precision/recall
accordingly. EDR = edit distance on real sequence; LCSS = longest common subsequences; DTW = dynamic time warping;
GRU = gated recurrent unit; LSTM = long short term memory.
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FIGURE 13 ELBOW method to choose K. Ek with suitable K value should be the elbow point in this figure. Here, we choose K = 33

FIGURE 14 Trajectories in Cluster 1. The blue lines stand for the trajectories; the yellow points stand for the start point; and the red points stand
for the end point. Most of the trajectories in this cluster are short round trips between tourist cities and generated by passenger ships



YAO ET AL. 13 of 16

in MSE (Equation 15). We choose 40 trajectories from both synthetic and real-life data randomly and measure the average training error in

each epoch.

The results are shown in Figures 10, 11, and 12. In general, the training error first decreases and then becomes stable while m and n increase.

The learning rate 𝛼 plays an important role as well. To achieve a trade-off between effectiveness and efficiency, we set m = 250, n = 400, and

𝛼 = 0.00001 for LSTM; and m = 100, n = 800, and 𝛼 = 0.00001 for GRU.

5.3 Results on synthetic data set

For the synthetic data, we set the sliding window to 600 s and the offset of the window to 300 s. We choose K-means algorithm to generate the

trajectory clusters. EDR and LCSS need a threshold of distance to determine whether two records are matching. After tuning, we set the threshold

to 100 m. The clustering performance of different methods is shown in Table 1.

The results show that our method can extract movement patterns much better than EDR, LCSS, Hausdorff, and DTW. Using our approach, the

trajectories with similar moving behaviours are clustered together, even if the similarity occurs in different regions and time periods. Our method

has improved the accuracy by more than 10% than the other methods used for comparison.

FIGURE 15 Trajectories in Cluster 2. The blue lines stand for the trajectories; the yellow points stand for the start point; and the red points stand
for the end point. Most of the trajectories in this cluster are distributed in inland rivers and it is sparser and longer than Cluster 1. These
trajectories are generated by inland cargo ships
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TABLE 2 Vessel type clustering results

Passenger Fishing Cargo Oil

Total number 50 50 50 50

Precision 46/53=0.87 38/44=0.86 23/37=0.62 50/66=0.76

Recall 46/50=0.92 38/50=0.76 23/50=0.46 50/50=1.0

Overall accuracy: (46+38+23+50)/200 = 0.785

5.4 Results on vessel motion data set

We perform two tasks on this data set. The first one is the standard trajectory clustering task, where we utilize our framework to generate clusters

that have similar moving behaviour and then analyse the meaning of trajectories in them. The second one is vessel type analysis in which we examine

whether the vessels owning the same type are grouped into the same cluster or not and measure the accuracies.

Trajectory clustering task: Utilizing our framework, trajectory moving behaviour vectors are generated. The parameters used in this procedure

are the same as synthetic data set. Observing LSTM is better than GRU, we choose LSTM model in this task. Also, We use K-means to generate the

clusters for the Z set.

As the number of ground-truth clusters in the real data is unknown, the procedure of choosing the value of K is conducted as follows. We set the

value of K from 3 to 100 in step-size 5. For each K, we calculate the sum of distances from samples to their nearest centroid and denoted it as Ek. The

result is shown in Figure 13 that depicts the K value is corresponding to the elbow point.

As shown in Figure 13, we choose K = 33, extracting 33 clusters for the 4,700 trajectories. Some of the cluster results are shown in Figures 14 and

15. The blue lines stand for the trajectories, whereas the yellow points stand for the start point; and the red points stand for the end point. The first

cluster containing 117 trajectories is depicted in Figure 14. As shown, most of trajectories are distributed in tourist city. Besides, most of them are

the short round trips. We find that the trajectories in this cluster are mostly generated from short passenger ship. The cluster in Figure 15 contains

180 trajectories. We can easily find that most of the trajectories are distributed in the inland river and the trajectories are sparser and longer than

those in the first cluster. We examined the member trajectories in this cluster and found that most of them were generated from inland cargo ships.

The above experiments show that the clusters generated by our approach can capture the movement patterns of the objects in different time and

space. The trajectories in each cluster are meaningful, and we can easily interpret each cluster by analysing the typical trajectories in them.

Vessel type analysis task: Previous studies have shown that different vessel types have different behaviour patterns (de Souza, Boerder, Matwin,

& Worm, 2016; Mazzarella, Vespe, Damalas, & Osio, 2014). In this task, we try to recognize the vessel type by utilizing the trajectory clustering.

We take the trajectory moving behaviour vectors of a vessel as the input of encoder and minimize the mean squared error between encoder input

and decoder output. Subsequently, we obtained the moving behaviour vector of the vessel. Based on these vessel moving behaviour vectors, we

utilized our clustering algorithm to get the vessel clusters. Ideally, the vessels in different clusters should have different vessel types. The clustering

accuracy results are shown in Table 2.

Although our approach is totally unsupervised, we still observe quite good vessel typing accuracies. The overall accuracy for vessel-type recog-

nition is about 78.5%. Especially, the precision/recall for the oil ship and the passenger ship are 0.76/1.0 and 0.87/0.92, respectively. However, the

result of cargo ship is only 0.62/0.46. We consulted the experts in the shipping field for this phenomenon. The reason is that cargo ships contain

many subtypes such as dry cargo ship, wet cargo ship, and roll-on-roll-off ship. These different types make a great difference in the moving behaviour

patterns. However, if such subtype information is available in the training process, the cluster performance is expected to be better.

In general, this set of experiments show that different vessel types have different moving behaviour patterns, and our framework is good at

capturing such patterns.

6 CONCLUSION

In this paper, we proposed a novel framework for trajectory clustering with similar movement patterns. A moving behaviour feature extraction

algorithm was proposed to extract moving behaviour features that captured space- and time-invariant characteristics of trajectories. Then, a

sequence-to-sequence auto-encoder is utilized to generate a deep representation of moving behaviour sequence and address the spatio-temporal

shifts problem. We have demonstrated the effectiveness of our framework on both synthetic and real data sets. Experimental results show that our

method has a higher accuracy than other trajectories clustering methods on synthetic data. Additionally, it can get useful trajectory clusters and

accurately detect object groups for the real data.
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