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ABSTRACT
Predicting the next location a user tends to visit is an important task
for applications like location-based advertising, traffic planning,
and tour recommendation. We consider the next location prediction
problem for semantic trajectory data, wherein each GPS record is
attached with a text message that describes the user’s activity. In
semantic trajectories, the confluence of spatiotemporal transitions
and textual messages indicates user intents at a fine granularity
and has great potential in improving location prediction accuracies.
Nevertheless, existing methods designed for GPS trajectories fall
short in capturing latent user intents for such semantics-enriched
trajectory data. We propose a method named semantics-enriched
recurrent model (SERM). SERM jointly learns the embeddings of
multiple factors (user, location, time, keyword) and the transition
parameters of a recurrent neural network in a unified framework.
Therefore, it effectively captures semantics-aware spatiotemporal
transition regularities to improve location prediction accuracies.
Our experiments on two real-life semantic trajectory datasets show
that SERM achieves significant improvements over state-of-the-art
methods.

KEYWORDS
Location Prediction, Semantic Trajectory, RNN

1 INTRODUCTION
Next location prediction, the task of inferring the location a user
tends to visit next based on her preceding GPS trace, has been
considered as an important building block for various mobile com-
puting applications. For example, in ride sharing services, predicting
the next locations for different users is vital to discovering groups
of users that have destinations in close proximity. Such a function-
ality can enable service providers to design optimized scheduling
strategies that reduce operating costs and energy consumptions.

While next location prediction has been extensively studied for
GPS trajectories, recent years are witnessing a rapid growth of
semantic trajectory data — wherein each record in the trajectory
is associated with a text message that describes the user’s activity.
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Driven by the prevalence of smartphones, hundreds of millions
people leave semantics-rich digital traces on social media websites
(e.g., Twitter, Instagram, Snapchat) on a daily basis [8, 9, 11]. Mean-
while, raw GPS trajectories can be readily linked with external
data sources (e.g., land uses, social media) to enrich GPS records.
In semantic trajectories, the attached text indicates user intents
and serves as a useful signal in inferring the next activity the user
tends to involve. There is an increasing need for location prediction
methods tailored for semantic trajectory data.

Next location prediction for semantic trajectories, however, is
not trivial. Compared with next location prediction for pure GPS
trajectory data, this problem introduces two unique challenges.
First, the semantics of user activities are usually expressed through
short text messages. It is important yet challenging to address text
sparsity and capture user intentions effectively. Second, to make
rationale predictions, one has to jointly model multiple factors: 1)
the spatiotemporal regularity — people make next visits based on
their locations and the current time; 2) the activity semantics — the
semantics of the user’s current activity can play an important role in
deciding the next location; and 3) the personal preferences — people
choose different places to visit based on their own preferences. Due
to the complicated interactions of these factors, it is difficult to
combine them in a unified predictive model.
Related Work. Existing next location prediction techniques can
be roughly divided into two categories: pattern-based and model-
based. Pattern-based methods extract user mobility patterns from
historic data and predict next location with these patterns. Various
methods have been proposed for mining sequential patterns [10],
periodic patterns [3], etc., which have been shown to be useful for
location prediction [6]. Nevertheless, pattern-based methods can
only mine explicit patterns defined a-priori, and cannot capture all
the movement regularities in the data.

Model-based methods learn statistical models to characterize
user movement regularity and make predictions with these learned
models. Different predictive models have been proposed, such as
hidden Markov models (HMM) [5, 11], matrix factorization (MF)
[2], periodic mobility models [1, 9], and recurrent neural networks
(RNN) [4]. Unfortunately, these models fall short in capturing the
semantics of user activities. They either do not consider textual
information at all [2, 4, 5]; or assume the keywords of a latent state
follows a multinomial distribution [11], which could suffer from
text sparsity severely.
Contributions.We propose a semantics-enriched recurrent model
(abbreviated as SERM onwards) for the next location prediction
problem in semantic trajectories. Compared with previous meth-
ods, SERM models spatiotemporal regularities, activity semantics,
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and user preferences in a unified way. It achieves this by jointly
learning: 1) the embeddings of multiple factors (user, location, time,
keyword); and 2) the transition parameters of a recurrent neural
network. It is thus capable of capturing semantics-aware spatiotem-
poral regularities underlying people’s movements to predict next
locations more accurately.

Our contributions are summarized as follows: (1) Different from
next location prediction for GPS trajectories, we study the next loca-
tion prediction problem for semantic trajectories, which introduces
new challenges and opportunities. (2) We propose a semantics-
enriched recurrent model that jointly learns the embeddings of
different factors and the transition parameters of a recurrent neural
network. (3) With experiments on two real-life semantic trajectory
datasets, we demonstrate that SERM achieves significant improve-
ments over existing methods.

2 PROBLEM DEFINITION
Consider a set of locations L = {l1, l2, ..., lM }. The locations could
be either points-of-interests (POIs) or equally-sized spatial grids.
Given a set of users U = {u1,u2, ...,uN }, we define the location
sequence for each user ui ∈ U as follows.

Definition 2.1 (Location Sequence). The location sequence for a
userui is a time-ordered sequence S (ui ) = {r1 (ui ), r2 (ui ), ..., rS (ui )}.
Each record rk (ui ) ∈ S (ui ) is a tuple (tk , lk , ck ), where: (1) tk is the
timestamp; (2) lk ∈ L is the location of user ui at time tk ; and (3)
ck is a text message describing the activity of user ui .

Note that, in the raw location sequence S (ui ), the time gap be-
tween two consecutive records could be large. As such, two records
may have little correlation even if they are adjacent in the raw
sequence. To address this problem, we impose a constraint on the
time gap and define semantic trajectories below.

Definition 2.2 (Semantic Trajectory). A semantic trajectory for
user ui is a location sequenceT (ui ) = {r1 (ui ), r2 (ui ), ..., rK (ui )} s.t.
∀1 ≤ k < K , 0 < tk+1 − tk ≤ ∆t , where ∆t > 0 is a pre-defined
time gap constraint.

With the time gap constraint ∆t , we can segment every raw
location sequence into a set of semantic trajectories. After the
segmentation, the input location sequences are organized into a
set of Z semantic trajectories T = {T1 (u),T2 (u), . . . ,TZ (u)}. Note
that the trajectories in T can have different lengths.

We are now ready to formulate the next location prediction
problem in semantic trajectories. Given a semantic trajectory Ti =
{r1 (ui ), r2 (ui ), ..., rK (ui )}, the task of next location prediction is to
predict the ground-truth location lK from the location set L , based
on the preceding sequence {r1 (ui ), r2 (ui ), ..., rK−1 (ui )}.

3 THE SERMMODEL
3.1 The Overall Architecture
SERM models the generation of the given semantic trajectories
with recurrent neural networks. During the modeling process, we
need to consider multiple factors for next location. First, a user’s
movement exhibits strong spatiotemporal regularity — the current
location and time slot can have strong influence in deciding the next
location. Second, the semantics of a user’s current activity serves

as a useful signal for next location prediction. Finally, the user’s
personal preferences often play an important role in next location
prediction.

To encode the above observations, we design the architecture of
SERM in Figure 1. At a high level, SERM models the trajectory gen-
eration process by integrating the embeddings of different factors
into a many-to-many recurrent neural net.

As shown in Figure 1, SERM consists of three layers: the em-
bedding layer, the recurrent layer, and the output layer. In the
remainder of this section, we present the details of different layers
and the learning procedure for the parameters.

3.2 The Embedding Layer
Consider the trajectory Tv (ui ) = {r1 (ui ), r2 (ui ), ..., rK (ui )} for a
given user ui . The embedding layer is designed to capture the infor-
mation of the dynamic factors in each record rk (ui ) = (tk , lk , ck ).
As shown in the right part of Figure 1, we learn the embeddings for
the location lk , the timestamp tk , and the content ck , then concate-
nate them into a vector ek to encode the information contained in
rk (ui ). We detail the embedding of each factor in the following.

3.2.1 Timestamp Embedding. The original temporal informa-
tion in each record is a real-value timestamp tk . However, it is
infeasible to embed every timestamp because time is continuous.
We thus map one week into 48 slots (24 slots for weekdays and
24 slots for weekends) and consider each hour as a basic embed-
ding unit. For any raw input timestamp tk , we transform tk into a
one-hot 48-dimensional vector representation. The time embedding
layer attempts to learn a Dt × 48 transformation matrix Et , where
Dt is the dimension for the embedding. With the matrix Et , we can
transform any one-hot input time vector tk into a Dt -dimensional
vector etk based on the following equation: etk = Et · tk .

3.2.2 Location Embedding. Each raw location lk is represented
as a M-dimensional one-hot vector, where the non-zero entry de-
notes the index for the corresponding location inL = {l1, l2, ..., lM }.
The location embedding module aims to learn a Dl ×M transforma-
tion matrix El , such that every location lk can be transformed into
a Dl -dimensional embedding vector elk according to the following
equation: elk = El · lk .

3.2.3 Content Embedding. For each record rk (ui ), the content
ck is a V -dimensional vector representing a bag of keywords from
a V -dimensional vocabulary. To embed the content, we define a
Dc ×V transformation matrix Ev . Then we transform the original
content ck into a Dc -dimensional vector eck base on: eck = Ev · ck .
The transformation amounts to looking up the embeddings of all
the keywords in ck , and then take the sum of them to encode the
semantics in the content. During training time, we use the pre-
trained GloVe word vectors [7] to initialize the matrix Ev , and then
fine-tune the parameters to adapt the embeddings for the next
location prediction task.

3.3 The Recurrent Layer
For each record rk (ui ) = (tk , lk , ck ) in the input trajectory, the em-
bedding modules are capable of generating vector representations
for tk , lk , and ck . By concatenating their embeddings, we obtain
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Figure 1: The architecture of the semantics-enriched recurrent model.
the vectorized representations ek ∈ RDe for the record (tk , lk , ck )
where De = Dt + Dl + Dc .

For a length-K semantic trajectory, the recurrent layer is com-
prised of K recurrent units. The k-th unit takes the embedding of
the record (tk , lk , ck ) as its input, and then computes the hidden
state as:

hk = f (W · hk−1 +G · ek + b).

In the above, hk ∈ RDh is a Dh -dimensional vector that repre-
sents the hidden state of the recurrent unit. It is computed by first
combining the previous hidden state hk−1, the embedding of the k-
th record ek , and the bias term b; and then performing a non-linear
transformation f (·). The involved parameters are: the Dh × Dh
matrixW , the Dh × De matrix G, the Dh -dimensional vector b,
and the transformation function f (·). Here, f (·) is instantiated as
the transformation function of Long Short-Term Memory (LSTM),
which can easily handle different-length sequences by sharing the
parameters of f at different time steps.

3.4 Output Layer
The hidden state hk encodes the information observed until step k .
Now we further integrate it with the users’ personal preferences
to output the prediction. To this end, we first transform hk into
a DM -dimensional (M is the total number of locations) vector ok ,
and then combine it with user embedding as follows:

ok =H · hk + a (1)
eui =Eu · ui (2)

o
′

k =eui + ok (3)

The termH is aM×Dh matrix and the term a is aM-dimensional
vector. They are introduced to map the original Dh -dimensional
hidden state hk into the M-dimensional vector ok . Furthermore,
with aM × N transformation matrix Eu , we also map the one-hot
user representation ui into aM-dimensional vector eui . Finally, we
sum the latent state representation ok and the user embedding eui ,
and derive the distribution over the M locations with the softmax
function, namely: yk = softmax(o′k ).

It is worth mentioning that, we fuse the user personal preference
with other dynamic factors in the output layer instead of treating
one-hot user representations as input. This is because unlike lo-
cation, time, and content, user preferences are static features that
do not change with different steps. By including them at a later
stage, we avoid repeating them in the input sequences. We have

empirically compared those two different strategies in our experi-
ments, and found that the late-fusion strategy leads to much better
performance.

3.5 Parameter Learning
Based on the SERM model described above, we are now capable of
generating a probability distribution over all the locations at each
step. To train the SERM model and infer the parameters, we use
cross entropy as the loss function for SERM. Given a training set
with Z samples, we define the objective function as:

J = −
Z∑
i=1

Ki−1∑
k=1

lk+1 log(yk ) +
λ

2 | |Θ| |
2

where Θ = {Et ,El ,Ec ,Eu ,W ,G,H ,b,a} denotes all the parameters
to be estimated, and λ is a pre-defined constant for the regular-
ization term to avoid overfitting. To optimize the above objective
function, we use Stochastic Gradient Descent and the Back Propa-
gation Through Time algorithm to learn the parameter set Θ.

4 EXPERIMENT
4.1 Experimental Settings

4.1.1 Datasets. Our experiments are based on two semantic tra-
jectory datasets in two cities: New York City and Los Angeles. The
fist dataset [10], referred to as NY, consists of 0.3 million Foursquare
check-ins from 2011-01 to 2012-01. The second dataset, referred to
as LA, consist of 1.4 million tweets from 2014-08 to 2014-11 [11].
For LA, we discretize the whole city into 500m×500m grids and
consider each grid as a location. For each data set, we first extract
the location sequences for different users. Then we remove the
users that have fewer than 50 records and segment the sequences
into semantic trajectories with a time gap constraint ∆t = 10h.
Furthermore, we remove the trajectories with lengths smaller than
three. After such preprocessing, we obtain 3103 trajectories from
235 users in NY and 7826 trajectories from 244 users in LA. 1

4.1.2 Compared Methods. We compare SERM with the follow-
ing methods: (1) Nearest Locations (NL): It chooses the nearest
neighbors to the user’s current location as predictions. (2) MF: [2]
MF casts the next location prediction problem as a recommenda-
tion problem. Based on the observed user-location matrix, it learns
low-dimensional vectors for users and locations, and recommend
the most similar locations for the user’s next visit. (3) HMM: [5]
It learns a Hidden Markov Model to characterize the movement
1Code and data available at https://github.com/yaodi833/serm.git
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regularities, and uses the learned model to choose the location with
the largest probability for next location prediction. (4) ST-RNN:
[4] It is the state-of-the-art method for next location prediction.
It is also based on recurrent neural networks, but the focus is on
modeling spatiotemporal transition matrices instead of learning
the embeddings of different factors. (5) SERM*: This is a variant of
SERM, which only models location, time, and user factors without
using textual information.

4.1.3 Experimental Protocol. For each data set, we randomly
select 80% trajectories as the training data, and use the remaining
20% for testing. We use two different metrics to evaluate the perfor-
mance of different methods. The first is the hitting ratio @k , which
examines whether the ground-truth location appears in the top-k
result list. For the test trajectories, the hitting ratio measures the
percentage of trajectories for which the ground-truth location is
successfully recovered by the top-k result list. The second metric is
the geographical distance, which computes the distance between
the ground-truth location and the top-5 prediction.

4.1.4 Parameter Settings. The key parameters in SERM include:
(1) the embedding dimension for time, location, and content, namely
Dt , Dl , and Dc ; (2) the dimension Dh for the hidden state. We have
tuned all these parameters in the range [10, 100]. Due to the space
limit, we omit the detailed results for different parameter settings.
In general, the performance of SERM increases with them and
gradually stabilizes when Dt ,Dl ,Dc and Dh are large enough. We
finally set Dt = Dl = Dc = Dh = 50 when comparing SERM
with other methods. For the compared methods, we tune their
parameters to obtain the best performance on our data sets.

4.2 Performance Comparison
Table 1 reports the performance of different methods on the two
data sets. All the experiments are repeated for five times and the
average performance is reported.
Table 1: Performance comparison for differentmethods. HR
is the hitting ratio; δd is the predictor error in distance.

Data Method HR@1 HR@5 HR@10 HR@20 δd /m

NY

NL 0.1630 0.2455 0.2998 0.4386 2903
MF 0.1690 0.4326 0.5013 0.5358 1963
HMM 0.1763 0.4298 0.5251 0.5518 1952
ST-RNN 0.1942 0.4421 0.5381 0.6053 1602
SERM* 0.2181 0.4398 0.5401 0.6107 1563
SERM 0.2535 0.4507 0.5433 0.6237 1457

LA

NL 0.3745 0.4516 0.4704 0.4911 6061
MF 0.3646 0.5810 0.6354 0.6877 2647
HMM 0.3921 0.5935 0.6331 0.6732 2521
ST-RNN 0.4311 0.6013 0.6521 0.6980 2384
SERM* 0.4452 0.6147 0.6590 0.6973 2377
SERM 0.4625 0.6265 0.6670 0.7026 2177

As shown, on both data sets, SERM and its variant SERM* out-
perform NL, MF, and HMM significantly. The comparisons with
these methods are discussed as follows: (1) The NL method is an
intuitive and straightforward baseline and works reasonably well.
Nevertheless, people’s movements are much more complex than
the nearest-first principle. (2) The MF method does not achieve

good performance for the next location prediction task. This phe-
nomenon is expected. Although MF can successfully discover the
locations a user is interested in, it fails to capture the sequential tran-
sition regularity, which is important for next location prediction.
(3) For HMM, it is outperformed by RNN-based methods (ST-RNN,
SERM*, SERM). The reason is two-fold. First, it relies on distribution
assumptions for user behaviors. Second, it only models first-order
dependency for people’s movements, while RNN-based models can
capture long-term dependencies.

ST-RNN turns out to be the strongest baseline, yet it is still
inferior to SERM* and SERM. Compared to ST-RNN, the advantage
of SERM mainly lies in its model design. To capture spatiotemporal
dynamics, ST-RNN partitions the space and time into bins, and
learns a transition matrix for every temporal and spatial bin. In
contrast, SERM only involves one transition matrix and captures
the spatiotemporal dynamics by embedding different locations and
hours into low-dimensional vector spaces. Such a strategy largely
reduces the parameters involved in SERM, and generates more
reliable prediction models.

Finally, comparing the performance of SERM* and SERM, one
can observe that SERM achieves considerable improvements over
SERM*. By including textual information into the modeling process,
SERM can capture the intentions of user activities more accurately,
which enables SERM to perform semantics-aware next location
prediction and achieve better performance.

5 CONCLUSIONS
We have proposed a novel recurrent model for semantics-aware
next location prediction. By jointly learning the embeddings of
multiple factors (user, location, time, keyword) and the transition
parameters of a recurrent neural network, our proposed model can
capture different contexts underlying user movements and enable
semantics-aware location prediction. We have evaluated our model
on two real-life datasets, and the results show our model achieves
significant improvements over state-of-the-art methods.
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