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Abstract—In this paper, we propose a new task namely 
trajectory cross-modal retrieval which achieves the cross-modal 
search between coordinate trajectories and images containing 
trajectories. Nevertheless, trajectory cross-modal retrieval is 
rather challenging in learning the representations of each 
modality and reduce the cross-domain discrepancy caused 
by the inconsistent data distribution at the same time. we 
proposes a cross-modal retrieval model TRAJCROSS based on 
multi-level representation for trajectory cross-modal retrieval. 
Specifically, T RAJCROSS e xtracts t he l ocation f eatures and 
the shape information respectively for the represention of 
multi-modal data. we adopt a contrastive learning method 
to achieve semantic preservation among similar multi-modal 
data. Extensive experiments show that TRAJCROSS significantly 
outperforms state-of-the-art cross-modal retrieval methods.

Index Terms—Cross-modal retrieval, Trajectory, Iamge, Con-
trastive Learning

I. INTRODUCTION

With the development of IoT techniques, massive trajec-
tories are collected in different ways, such as GPS sensors, 
surveillance videos and etc. The modalities of these data are
different which leads that the analysis result of each modality 
can not be shared. Cross-modal retrieval, aiming to achieve 
mutual retrieval between two or more modalities, builds a 
bridge across different modalities and is vital for trajectory 
data analysis.

However, trajectory cross-modal retrieval is challenging due 
to the multi-modalities and semantic gap as shown in Figure 1. 
on one hand, the data format and composition of multi-modal
data are different. It bring the challenge in designing model 
to extract right information for cross-modal retrieval. On the
other hand, the semantic information contained in the two 
modalities are different. Building the information extraction
model for each modality separately can not ensure the right 
part to be extracted.

Various methods have been proposed for cross-modal re-
trieval but none of them is designed for trajectory data. 
Existing methods for cross-modal retrieval mainly use deep
learning based methods. Most of them employ deep neural
networks and build two sub-networks for different modalities
to learn the characteristics of each modality separately. Then
the two models are linked together with a joint layer to learn
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Fig. 1. An illustration of trajectory cross-modal retrieval.

cross-modal correlation. Although these methods can model
images, the characteristics of the trajectory data cannot be
extracted well. Besides these cross-modal retrieval method,
there exist other works designed to learn trajectory embeddings
[15], [16]. However, these method can only model coordinate
trajectories and not capable of modeling images. Above all,
there has no method can be directly used for trajectory cross-
modal retrieval.

To overcome the limitations, we propose a novel method,
namely TRAJCROSS, to systematically transform the semantic
information of both the coordinate trajectories and trajectory
images in one shared latent space. For the coordinates trajecto-
ries, TRAJCROSS extracts the location features and the shape
information respectively. As the auxiliary feature, the shape
information is converted to an image to help the information
extraction of image trajectories. Subsequently, we employ
adversarial network to bridge the semantic gap of cross-modal
representation.

To summarize, the contributions of our work are as follows:

• We define the trajectory cross-modal retrieval task. To the
best of our knowledge, it’s the first work trying to solve
the trajectory cross-modal retrieval problem on coordinate
trajectories and trajectory images.

• We propose a novel model, namely TRAJCROSS, to sys-
tematicly learn the representation of different modalities
of data ensuring these representations to be in the same
latent space.

• Through extensive experiments on real-world datasets,
we illustrate the effectiveness of the model in trajectory
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cross-modal retrieval.

II. RELATED WORK

In this section, we briefly review the representative methods
of cross-modal retrieval. The methods can be divided into two
categories: traditional statistical analysis methods and deep
learning based methods.

Traditional statistical analysis methods. These methods
mainly learn linear projection matrices through traditional
statistical analysis methods. It projects the characteristics
into the public space and obtains a public representation.
Canonical Correlation Analysis (CCA) [6] is one of the
most representative works. The solution achieves retrieval by
maximizing the correlation between cross-modal datasets. In
addition, many methods combine label information in order
to improve the performance of the CCA. For example, the
work [12] incorporate semantic category label to improve the
performance of CCA. This type of method mainly learns linear
projection to maximize the correlation between paired data of
different modalities.

Deep learning based methods. Due to the powerful abil-
ity of deep learning to model highly nonlinear correlations,
various cross-modal retrieval methods based on deep learning
have been proposed. To alleviate the problem of limited linear
ability of CCA, a method DCCA [2] combining CCA and
deep learning was proposed. DCCA maximizes the correlation
at the top of the two subnets. Srivastava et al. [13] proposed
a multimodal deep belief network (Multimodal DBN), which
uses two different modal DBNs to model the distribution of
the original features. In addition, methods based on likelihood
analysis have also been proposed [8]. Although this kind of
method based on deep learning can better characterize the
correlation between multi-modality, the characteristics of the
trajectory data cannot be extracted well, which will harm the
retrieval accuracy.

III. THE PROPOSED MODEL

A. Preliminaries

There is a Dataset S which is a collection of N instances
of trajectory-image pairs. A trajectory Ti is represented by
a sequence of points collected from various equipment. The
image Ii has the location information of its geographic area,
and at the same time, the image contains the trajectory line.
Formally,

S = {Ti, Ii}Ni=1, Ti = {latki , lonki }Mk=1,

I loci = {Ui, Bi}, Ui = {latui , lonui }, Bi = {latbi , lonbi}.

Ti and Ii are the corresponding trajectory and image of
the i-th matched pair. latki and lonki represent the longitude,
latitude for trajectory Ti at timestamp k and M is the length
of the trajectory. Ui and Bi are the latitude and longitude of
the geographic location corresponding to the upper left and
lower right corners of the image.

The goal of this paper is to achieve cross-modal retrieval
of trajectories and images containing trajectories. Given a
trajectory containing S points, we need to retrieve images that
match the given S points from millions of images containing
trajectories, and vice versa. The core of the problem is to
encode the data of different modalities to get the embeddings,
and to establish a measurement method D(Ti, Ij) to judge the
similarity between these embeddings.

B. Trajectory Representation
Previous works obtained the trajectory representation using

recurrent neural networks. However, the extracted features
have no physical meaning. We adopt a multi-feature represen-
tation for the trajectory. Specifically, we consider the position
and shape of the trajectory sequence to obtain the embedding
of the trajectory.

Position representation of the trajectory. We adopt the
CNN method to extract the position representations of the
trajectory sequences. Let T = {t1, t2, · · · , tm} denote a tra-
jectory with tm = {latm, lngm}, where m ∈ {1, 2, · · · ,M}
denotes the m-th timestamped point and M is the length of
T . First, we use a linear layer to embed each point as multi-
dimensional continuous vectors.

tem = TrajectoryEmbed(tm). (1)

Then, all the embeddings (row-wise) are aligned vertically and
sequentially to form the trajectory matrices, denoted as Te

m =
{te1, te2, · · · , tem}.

In the convolution stage, convolution filters of different
heights are applied to the matrix. Note that the width of the
filter is the same as the length of the trajectory embedding.
The output of the convolution is a vector with different lengths.
But after the max pooling of each vector, it can be concated
to form the initial representation of the trajectory, followed by
fully-connected layers. The whole process is recorded as:

Pe
t = LinearLayer(TrajectoryCNN(Te

m)). (2)

Shape representation of the trajectory. Different from
the previous method of directly applying CNN to the trajectory
sequence to obtain the trajectory position representation, we
convert the trajectory sequence into an image in order to better
obtain the shape information of the trajectory sequence based
on the CNN, followed by a fully connected layer. We denote
the converted image as IMGt and the shape representation
of the trajectory as Se

t :

Se
t = LinearLayer(TrajectoryImgCNN(IMGt)), (3)

After obtaining the shape representation and position rep-
resentation of the trajectory sequence, we obtain the final
representation of the trajectory sequence by concating them,
denoted as Te

Te = concat(Pe
t ,S

e
t). (4)
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Fig. 2. Architecture of the TRAJCROSS. The function of the representation of trajectory and image is to obtain the representation of the trajectory sequence
and image. Afterwards, the embeddings are mapped to the common space through adversarial learning to eliminate cross-modal discrepancy.

C. Image Representation
As with the image trajectory sequence, we also need to

consider the representation of the image from the two aspects
of position and shape.

Position representation of the image. How to learn the
position of the trajectory in the image without prior knowledge
is an important factor for the success of cross-modal retrieval.
In order to obtain the position of the trajectory in the image,
this paper uses an improved CNN method to process the
image, denoted as WCNN. The core of the improvement is
to make the width of the convolution kernel the same as the
width of the image. The advantage of the improvement is that
the convolution operation is not limited to small areas, but
extract features from larger receptive fields. We denote the
position representation of the Image as P ei

Pe
i = LinearLayer(WCNN(IMG)), (5)

where IMG represents the image corresponding to the trajec-
tory sequence.

The above operation obtains the relative position of the
trajectory in the image. We also need to determine the ab-
solute position of the trajectory. First, we embed the location
information of the image as Ve

locInfo,

Ve
locInfo = LinearLayer(Iloci ). (6)

Then, in order to obtain the absolute position representation
of the trajectory, we concat the representation of the image
position Ve

locInfo and the representation of the trajectory
position in the image Pe

i , followed by a fully connected layer,

Ve
locInfo = LinearLayer(concat(Pe

i ,V
e
locInfo)). (7)

Shape representation of the image. As we discussed
above, various CNN methods have been able to extract high-
level semantic information, so we directly use the CNN
method to obtain the shape semantic information of the
trajectory from the image, denoted as:

Se
i = ImgCNN(IMG), (8)

We get the final representation of the image by concating the
shape representation and position representation of the image,
denoted as I:

Ie = concat(Pe
i ,S

e
i ). (9)

D. Objective Formulation
As illustrated in Fig 2, there are positive images and

negative images. We defined the matching trajectory and image
pairs as positive samples, represented here as {T, I+}. We use
images that do not match the trajectory to form a negative
sample, denoted as {T, I−}.

Adversarial loss. Due to the domain gap between trajectory
sequence and image, the extracted features from both domains
cannot be matched for similarity measurement. Similar to the
work [17], this paper aims to learn a common subspace to
enable cross-modal comparison. we adopt GAN to eliminate
the gap between cross-modal.

We define a modal classifier, denoted as S, to distinguish
whether the embedding representation comes from an image
or a trajectory. The representation of the image is assigned
label 0, and the representation from the trajectory is assigned
label 1.

Constrative loss. The core of cross-modal retrieval is to
measure the similarity between modalities. After obtaining the
trajectory representation Te and the image representation Ie,
the similarity between the image and trajectory is measured
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with a dot product, (Te)tIe. In order to achieve cross-
modal retrieval, we aim to minimize the gap between the
representations of all semantically similar items from different
modalities, while maximizing the distance between semanti-
cally different items from the same modality. To achieve this
goal, we train the model by using the standard noise contrast
estimation (NCE) [5], [10]:

Lcon = −
n∑
i=1

log

(
(Te

i )
tIei

(Te
i )

tIei +Φ

)
, (10)

Φ =
∑
I−∈ψi

(Te
i )

tIe−, (11)

where ψi represents the negative sample set of the image
relative to the trajectory. It contrasts the score of the positive
pair to a set of negative pairs sampled from a negative set.

Overall loss. The modules of TRAJCROSS are trained end-
to-end. However, the parameters of modules are optimized
separately using different loss functions based on the above.
The process of training the model runs as a minimax game,
and the goals of the two loss functions are opposite. The
process of learning the best embedding is conducted by jointly
minimizing adversarial loss and embedding loss.

IV. EXPERIMENTS

All experiments will be implemented in PyTorch 1.0 on a
workstation with GPU NVIDIA 2080ti and Ubuntu operating
system.

Datasets. Our experiments are conducted on simulated
datasets. The dataset is generated based on univ [11], which
has been widely used by many other works [1], [4]. Following
the data processing principle as reported in [4], the position of
the pedestrian from the original pixel locations in the image
will be converted to world coordinates in meters. We convert
each trajectory into an image. These generated images are used
as the image to be retrieved in cross-modal retrieval. In order
to make the generated image more practical in line with the
actual situation, we will randomly generate the thickness of
the trajectory line in the image when generating the image
corresponding to the trajectory. Finally, We generated 10,000
training data and 2379 testing data. This dataset serves as a
benchmark for the performance evaluatione on our proposed
model.

Evaluation Metric. Since there is only one ground-truth
match for each trajectory/image, to evaluate the retrieval
performance of the proposed schemes, we use the measure of
top N percentage, which is a classical performance evaluation
criterion in the research on cross-modal retrieval for datasets
without semantic label [3], [9]. More specifically, an trajec-
tory(image) is considered correctly retrieved if it appears in
the first k list created from its corresponding image(trajectory).
Similar to [14], two cross-modal retrieval tasks are considered
for the proposed mode: trajectory retrieval from an image
query, and image retrieval from a trajectory query.

Compared models. To verify the effectiveness of our
model, we compare our approach with state-of-the-art meth-
ods, which have been widely adopted as benchmarks in other
literatures. It is notable that all the methods to be compared do
not consider location information. To make a fair comparison,
we add the location information to the embedding of the image
when implementing the comparison method.

• CCA [6]. This is an important technique to learn a
common subspace for heterogeneous data. It establishes
the correlation between two sets of data through a linear
analysis method.

• MOCO [7]. This paper uses contrast learning to learn
modal features. After we convert the trajectory into an
image, we use the idea of contrast learning to learn modal
features.

• ACMR [14]. It is based on an adversarial learning
approach and triplet constraints to learn representations
which are both discriminative and modality-invariant for
cross-modal retrieval.

• Corr-AE and Corr-Cross-AE [3]. It learns the common
space features via incorporating autoencoder cost with
correlation cost into a single process. Corr-AE is extended
to Corr-Cross-AE by replacing the basic autoencoder with
a cross-modal autoencoder.

• DBRLM [8]. The model is characterized by deep and
bidirectional representation learning. The learning ob-
jective is to increase the similarity of matched pairs
and reduce the similarity of unmatched pairs, which is
achieved by using the framework of maximum likelihood.

Ablation Models
• TRAJCROSS/nogan. We removed the adversarial learn-

ing module so that we can verify its impact on the model.
• TRAJCROSS/noxy. We removed the location information

of the image in the model to illustrate the role of the
information.

TABLE I
THE RESULTS OF DIFFERENT METHODS(%)

Method
trajectory2image image2trajectory

top@1 top@5 top@10 top@1 top@5 top@10

CCA 0.509 1.32 2.12 0.04 1.296 2.509

MOCO 4.29 14.29 22.78 2.82 13.87 21.94

ACMR 0.42 0.21 1.32 0.38 0.32 1.44

Corr-AE 0.04 0.31 0.42 0.08 0.25 0.34

Corr-Cross-AE 0.04 0.21 0.46 0.04 0.21 0.46

DBRLM 0.04 0.21 0.41 0.12 0.71 1.43

TRAJCROSS 69.8 90.4 94.3 70.2 91.1 94.5

A. RESULTS AND ANALYSIS
1) Performance Comparison: We compare TRAJCROSS

with all the baseline methods. Table I shows the experimental
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Fig. 3. The ablation experimental results of cross-model retrieval. Overall, the model proposed in this paper has the highest accuracy compared with other
variants in terms of top@1, top@5, top@15.

results. According to the results, we have two key observa-
tions. First, we can observe that the experimental results of
our model are significantly better than other methods, which
proves the effectiveness of our method in cross-modal retrieval
scenarios of trajectories. Traditional methods cannot play a
role in the multi-modal retrieval of trajectories because of
their limited ability to discover data relationships. The existing
multi-modal retrieval methods based on deep learning cannot
achieve good results in the multi-modal retrieval scene of the
trajectory, mainly because the shape and position information
of the trajectory cannot be well represented. Second, among
these benchmark methods, the Moco method is better than
other methods, mainly because the method is based on images
to achieve cross-modal retrieval and can capture the shape
information of the image. This shows that it is useful to extract
trajectory information from images, which provides another
way to process trajectories.

TABLE II
THE EXPERIMENTAL RESULTS OF VARIOUS VARIANTS(%)

Method
trajectory2image image2trajectory

top@1 top@5 top@10 top@1 top@5 top@10

TRAJCROSS/OnlyTraj 3.45 13.3 20.8 2.4 11.1 20.3

TRAJCROSS/TrajCNN 0.04 0.21 0.42 0.08 0.25 0.42

2) Ablation study: We perform ablation experiments to
analyze TRAJCROSS by comparing it with two ablations. The
results are shown in Figure 3.

According to Figure 3, overall, the performance improves
compared to TRAJCROSS/nogan that does not use GAN
when training the model In terms of top@1, top@5 and
top@15. Taking the trajectory retrieval image as an example,
the accuracy is increased by 2.9%, 1.0%, 0.5% respectively.
This means that adversarial learning helps to eliminate the
discrepancy between modalities.

When comparing TRAJCROSS/noxy with TRA-
JCROSS/nogan and TRAJCROSS, we can see that the accuracy
of TRAJCROSS/noxy is obviously lower. Specifically, taking
the trajectory retrieval image as an example, the accuracy are
reduced by 4.0%, 2.4%, 0.9% respectively compared with
TRAJCROSS in terms of top@1, top@5 and top@15. This

shows that in the cross-modal retrieval of trajectories, the
model must consider the geographic information covered by
the image, otherwise the obtained results will have errors.

In order to be able to further confirm which factor of the
image and the trajectory is the key factor for the successful
cross-modal retrieval of the trajectory, we conducted two
following experiments respectively:

• TRAJCROSS/onlyTraj. We only use the trajectory se-
quence and do not use the image corresponding to the
trajectory as the input of the model to obtain the results
of cross-modal retrieval.

• TRAJCROSS/TrajCNN. In order to further verify the
effectiveness of the image corresponding to the trajectory
in cross-modal retrieval, we replace this module with
the original trajectory sequence to extract the shape
information directly. We use CNN to extract the shape
of the trajectory sequence.

The results are shown in Table II. Through the experimental
results of TRAJCROSS/onlyTraj, we can see that it is not accu-
rate to achieve cross-modal retrieval based on the information
provided by the trajectory sequence alone. Meanwhile, we
can clearly see that the accuracy of TRAJCROSS/TrajCNN is
significantly lower than that of TRAJCROSS, which means that
images are the key to successful cross-modal retrieval. The
main reason for this situation is that in the process of cross-
modal retrieval for trajectory, we can extract more features to
assist cross-modal retrieval through images, but it is difficult to
learn useful features directly through trajectory sequence. This
provides a new idea for the processing of trajectory sequences
for subsequent research work.

V. CONCLUSION AND FUTURE WORK

In this paper, we define a new research problem i.e.,
trajectory cross-modal retrieval. The challenge is how to
effectively embed the data of each modality, and at the
same time, reduce or eliminate the cross-domain discrepancy
caused by the inconsistent data distribution. We adopt the
method of multi-level feature extraction to obtain the shape
and position feature representation of each modality. In order
to eliminate the gap of multi-modal, we apply the method
of adversarial learning. Comprehensive experimental results
and extensive analysis have proved the effectiveness of our
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method. Compared with the most advanced methods, it can
provide excellent performance on cross-modal retrieval.
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